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NONLINEAR SYSTEM STOCHASTIC TECHNIQUES
FOR OCEAN ENGINEERING APPLICATIONS

_Abstract

This report discusses the analysis and identification
of nonlinear system dynamic properties by stochastic
techniques on measured experimental data. Two ocean
engineering applications of this material are developed
Qf concern tg NCEL representing: (a) nonlinear wave
force problems, and (b) nonlinear drift force problems.
General models are formulated consisting of parallel
linear and nonlinear systems where the input data can
be Gaussian qQr non-Gaussian. Formulas are stated for
statistical errqrs in estimates from measured random
data to help design experiments and to evaluate results.
The last sectian of this report derives various usefu)
input/output relationships when stationary random data
pass through three types of nonlinear nonsymmetrical
systems of physical interest.
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NONLINEAR SYSTEM STOCHASTIC TECHNIQUES
FOR OCEAN ENGINEERING APPLICATIONS

INTRODUCTION

The Naval Civil Engineering Laboratory (NCEL) has sponsored develop-
ment of a new approach for random data analysis and identification of
nonlinear systems under NCEL Contract N62474-86-7275 with J. S. Bendat
Company, the contractor. This research has been conducted in a series
of tasks, each of which resulted in an informal report. During this
period, work on related matters was performed by the J. S. Bendat
Company for other sponsors, and much work was also done as independent
research and development. The basic mathem;tical aspects of these new
results is now being published in book form by J. S. Bendat with John
Wiley & Sons, New York. However, some of the material that relates
specifically to ocean engineering will not be included. This present
NCEL contractor report complements the book by emphasizing certain
matters that represent important new practical ways to analyze and
identify nonlinear system dynamic properties from measured data, and

by focusing on ocean engineering problems of concern to NCEL.
This report discusses the following topics:

Section 1. Parallel Linear and Nonlinear Systems.
Section 2. Nonlinear Wave Force Models.
Section 3. Nonlinear Drift Force Models.

Section 4, Nonlinear Nonsymmetrical Systems,




Techniques are explained in Section 1 on how to replace a large
class of single-input/single-output nonlinear models by equivalent
multiple-input/single-output linear models. This is a significant
achievement because it permits complicated nonlinear problems to be
solved by known 1linear procedures. Input data to the nonlinear
systems can be Gaussian or non-Gaussian; the data can be stationary
random data or transient random data. Formulas for non-Gaussian input
data require the computation of conditioned spectral density func-
tions. Formulas for Gaussian input data require only ordinary auto-
spectral and cross-spectral density functions when the parallel
nonlinear systems are square-law and cubic systems. Square-law and
cubic nonlinear systems are the nonlinear systems that occur when one
obtains an optimum third-order polynomial least-squares approximation
to an arbitrary zero-memory nonlinear transformation. Thus, linear

systems in parallel with square-law systems and cubic systems are of

major importance in modeling many physical problems.

Sections 2 and 3 discuss nonlinear wave force problems and non-
linear drift force problems. Appropriate models are formulated for
each problem where zero-memory nonlinear systems are followed by
linear systems. Two types of problems are solved: (a) the spectral
decomposition problem, and (b) the system identification problem.
Statistical errors in estimates are given to help design experiments
and to evaluate measured results. Section 4 develops input/output
relationships for stationary random data through three zero-memory
nonlinear nonsymmetrical systems: (a) three-slope systems, (b)
catenary systems and (c) smooth-limiter systems. Formulas are stated
for input/output probability density functions, correlation functions

and spectral density functions.




1. PARALLEL LINEAR AND NONLINEAR SYSTEMS

Before discussing techniques for analyzing and identifying system
properties in parafle] 1inear and nonlinear systems, three topics need

to be covered that will occur in later material. These topics are
1. zero-memory nonlinear systems,

2. optimum third-order polynomial least-squares approximations to

zero-memory nonlinear systems, and

3. finite-memory nonlinear systems.

1.1 ZERO-MEMORY NONLINEAR SYSTEMS

A "zero-memory" nonlinear system 1is a system that acts
instantaneously on present inputs in some nonlinear fashion. It does
not weight past inputs due to “memory" operations as in convolution
integrals for constant parameter linear systems, where the present
value of the output is a function of both present and past values of
the input. For zero-memory nonlinear systems, the output y(t) at any
time t is a single-valued nonlinear function g(x(t)] of the input x(t)

at the same instant of time. Thus, as shown in Figure 1.1,

y(t) = glx(v)) (1.1)

vhere g(x) {3 a single-valued nonlinear function of x. Note that g(x)

is not a function of t.




Nonlinear
x(t) > System —»= y(t) = g{x(t)]

g(x)

Figure 1,1 Zero memory nonlinear systenm.

The system g(x) is nonlinear means that for any constants 3 8,

and any inputs X1 Xy

g(a,x; +a,%,) # a, g(x)) + 2, g(xy) (1.2)

either because g(x) is not additive or because g(x) is not homogenous, or
both.

The system {s a constant parameter nonlinear system if the response

of the system i{s indepeandent of the particular time of use, namely, if

sn ioput x(t) is translated to an foput x(t + t), then the output y(t) is

translated to an output y(t + v). If the system {s a constant parameter

nonlinear system, and if the ioput x(t) represents a stationary random
process, then the output y(t) will also be a stationary random process.

For these cases y(t) = g[x(t)] gives y(t + t) = g[x(t + t)] and the

correlation functions

Ry (¥) = Elx(t)y(t + )] = E{x(t)g[x(t) +1)]} (1.3)
Ry (7) = E[y(t)y(t + t)] = E{g{x(t)]g[x(t + 1)]} (1.4)

are functions only of v as required for stationary random data.




Many examples of zero-memory nonlinear symmetrical systems are
discussed in References [1l, 2]). They include two-slope systems, dead-
zone systems, c?ipped systems, square-law systems, cubic systems,
hardening spring systems and softening spring systems. Three examples
of zero-memory nonlinear nonsymmetrical systems are treated here in

Section 4.

Three theorems are proved in References [1, 2] that are useful
for determining input/output relations when stationary random data
pass through a zero-memory nonlinear system. Theorem 1 applies to
arbitrary stationary random input data. Theorems 2 and 3 apply only
to Gaussian stationary random input data. These theorems will be used

in Section 4.

Theorem 1.

For any input data x(t) with probability denmsity function p(x) where x(t)
Passes through a zero-memory nonlinear system to produce y = g(x) which
is single-valued and one-to?one, the output probability density function

pz(y) for the output y(t) satisfies the relation

= . p(x)

(1.5)
| ay/ax|

P, (y)
This theorem assumes that (dy/dx) = g'(x) exists and {s not equal to
Zexo, When solving for pz(y), the variable x on the right-hand side
should be replaced by its equivalent y from x = g-l(y).




Theorem 2. (Price)

For Gaussian input data x(t) with known autocorrelation function

R x(t), where x(t) passes throdgh any zero~memory nonlioear system to

produce y = g(x), the output autocorrelation function R _ (1) for y(t)

satisfies the relation

“3R. (%)

oy = e e o)

(1.6)
XX

whenever g'(x) = [dg(x)/dx] exists at Xy = x(t) and Xy = x(t + 1) .

Theorem 3. (Bussgang)

For Gaussian input data x(t) with kotwn autocorrelation function

R, (¥), vwhere x(t) passes through any zero memory nonlinear system to
produce y = g(x), the input/output cross- correlation function R (r)
satisfies the relation

(v)
ny(t) = XX

ME))
f x g(x)p(x)dx --———— Elx g(x)] (1.7)

0
X

In Theorems 2 and 3, the first-order probability densfty function
for x is given by the Gaussian form

plx) = (Va /Z)exp(-x?/202) (1.8)

where the mean value is assumed to be

zero and the vari-
ance oi = E[xz(t)]. In Equation 1.7, the quantity

E[xg(x)] = [ xg(x)p(x) dx (1.9)




Identification of Zero-Memory Nonlinear Systems

When y = g(x) is single-valued and one-to-one, it can be
identified from measurements of x(t) and y(t) by using the relation

‘yO xO
Poly,) = L Po(¥)dy = [ p(x)dx = Plx,) (1.10)

o
where P(x,) and P,(y,) are the probability distribution functions of

x(t) at x

o and of y(t) at Yo = g(xo), respectively. To determine the

zero-memory nonlinear function y = g(x), one should select various
values of x,, calculate P(xo) and then determine the associated values

of y, such that %(yo) = P(xo).

1.2 OPTIMUM THIRD-ORDER POLYNOMIAL APPROXIMATION

Suppose y = g(x) represents any zero-memory nonlinear system
where y = y(t) and x = x(t). What is the optimum least-squares

approximation to y = g(x) by the third-order polynomial y = y(t) where
y=ax+ azx2 + a3x3 (1.11)

under the assumption that x follows a zero mean value Gaussian
distribution? To be specific, what should be the choices of the

coefficients a1, 3, and a3 so as to minimize the quantity
~2 2 3.2
Q=Ely-y)] =€y - QX - ax - agx )] (1.12)

over all possible choices of these coefficients?

-7-




For any y, the Gaussian assumption on x gives

Q = Ely’) - 28E(xy) - 2aE(xly) - 2a5ppdy)
+ %E[le + 29,1;3)-:[):['] + GZE[::"] +a§£[x6] (1.13)

using the fact that E(x] = E[x3] = E[x%) = ¢ for the p(x) of Equatfon

1.8.  Then setting partial derivatives of Q with respect to ag, 23y

and a3 equal to zero shows

%%;. = =-2E[xy] + 2&11'.‘[:2) + 2031?.[::_‘) =z 0 (1.14)

'%96'2 = -2E(x%y] + 2323(861 = 0 (1.15)

‘g‘gi‘ = -2e(x%] + 2313(161 +22 (%] = ¢  (1.16)
3 3

Now, using the fact that E[xz] = ag. Elt] - 30:. and E[xs] = 1502 for

the Gaussian p(x) of Equation 1.8 shows

2 4

1.1

a0 + 3a.30x = E(xy) (1.17)
3&20: = ![xzy] (1.28)
3alc: + 1Sa3a: = !(xayl (1,19)




Hence, for any y, one obtains the y of Equation 1.11 from the

special coefficients

ISOgEIxy] - 3a:E[x3yl (1.20)

8
Gox

2
.y = E{x"y] (1.21)

30,

) o2E[x’y] - 303 x]

8
boy

(1.22)

Example. Square-Law System with Sign

Consider application of these matters to a square-law system with

sign where
y = x|x| (1.23)

For this particular y, the Gaussian assumption on x yield

Elxy] = E[lexll = 25[:3]x>° = 20: (2/r) (1.24)
Elxly) = El3|x|]) = o (1.25)
E[xay] = E[x‘lxll = ZE[xs]x>° = sai (2/“) (1.26)




From Equations (1.20) to (1.22), one obtains

a = OXV(Z/n) (1.27)
a, = 0 (1.28)
(1.29)

83 = V(Z/n)/3ax

Hence, the optimum third-order polynomial least-squares approximation

to x|x| by Equation 1.11 is

Y = ayx +agx
= [ox \|(2/n)] x + [\I(Z/n)/:iax] x> (1.30)
Thus x|x| can be treated as a combination of a linear system in

parallel with a cubic system. Figure 1.2 shows x|x| compared to

the y of Equation 1.30.

=10~




Nonlinear Output Value, Y

| | 1 |

1 2
Linear Input Value, x (with o, = 1)

Figure 1.2 Least squares approximation of x|x|.
is x|x|; =- - - is Equation (1.30).

-]1l-




1.3 FINITE-MEMORY NONLINEAR SYSTEMS

When finite-memory operations are desired in connection with
zero-memory nonlinear systems, they can often be obtained by inserting
a constant-parameter linear system before and/or after the zero-memory
nonlinear system., Cases where the linear system is after the zero-
memory nonlinear system represent the cases of greatest interest and
are the only cases discussed in this report. Other cases where the
linear system precedes the zero-memory nonlinear system are discussed
in References [1, 2]. Figure 1.3 shows a finite-memory nonlinear
system with a Tlinear system A(f) that is after the zero-memory

nonlinear system defined by g(x).

lero-Memory

x(t) ———) Non]in?a; System ——)—) A(f) ———Py(t)
9(x v(t

Figure 1.3 Finite-memory nonlinear system.




An extension of Figure 1.3 that is applicable to many physical
problems occurs when the input data x(t) passes through parallel
linear and finite-memory nonlinear systems as shown in Figure 1.4,
where H(f) and A(f) are two arbitrary constant-parameter linear
systems and where g(x) is any specified zero-memory nonlinear
system. The output noise data n(t) is assumed to be uncorrelated with

both x(t) and y(t).

H(f) n(t)
: yi1(t)
x(t) ___| y(t)
lero-Memory
) Nonlinear System ) A(f)
g(x) x2(t) ya(t)

Figure 1.4 Parallel linear and finite-memory nonlinear systems.

-13-




Two problems are associated with the nonlinear model in Figure

1.4,

(1) Spectral Decomposition Problem. Given H(f), A(f) and g(x), plus

measurements only of x(t), determine the spectral properties of
Y1(t) and yp(t). If y(t) is measured as well as x(t), determine

also the spectral properties of n(t).

(2) System Identification Problem. From simultaneous measurements of

both x(t) and y(t), identify the optimum frequency response

functions H(f) and A(f) to minimize the autospectrum of n(t).

Sections 1.4 and 1.5 outline practical techniques that can solve these
two problems. In Section 1.4, input data can be non-Gaussian, whereas
in Section 1.5, input data are assumed to be Gaussian. Thus, these
techniques are applicable to physical situations of widespread
importance without restricting the probability density function of the
measured input data. More general models than Figure 1.4 are
considered involving one linear path and two parallel nonlinear paths
as shown in Figure 1.5. Sections 2 and 3 apply these techniques to

wave force problems and drift force problems.




1.4 NON-GAUSSIAN INPUT DATA

Consider the general single-input/single-output nonlinear model
of Figure 1.5 with three parallel paths where the input data x(t) can
be non-Gaussian. Let go[x(t)] be an arbitrary known zero-memory
nonlinear transformation of x(t) and let g3[x(t)] be a different

arbitrary known zero-memory nonlinear transformation of x(t). Let

xp(t) = x(t),  xp(t) = gp[x(t)],  x3(t) = g3[x(t)] (1.31)

represent the three usually correlated input records to the three
Tinear systems Ay(f), Ap(f) and A3(f), respectively. The three
associated usually correlated output records from these Systems are
denoted by Yi(t)’ yo(t) and y3(t), respectively. To complete the
model, let n(t) represent extraneous uncorrelated output noise and let
y(t) represent the total output from the system. A special important
case of Figure 1.5 1is when gp[x(t)] = xz(t) and g3[x(t)] = x3(t).

This case is treated in Section 1l.5.




(t)
Ay (f) "
> yi(t)

x1(t)

x(t) — L) gz[x(t)]'_;aﬂ_) Ay (f) 7578 ® y(t)

g3lx(t)] A3(F)
—» e e

Figure 1.5 General single-input/single-output nonlinear model
for non-Gaussian input data that passes through a
linear system in parallel with two finite-memory
nonlinear systems.

Note that Figure 1.5 simplifies to Figure 1.4 when g3[x(t)] = 0
so that all results obtained here apply to the model in Figure 1.4 by
merely setting x3(t) and all subsequent terms computed from x3(t) to

Zero.

Figure 1.5 can be replaced by the equivalent three-input/single-
output linear model of Figure 1.6 where the capital letter quantities
are Fourier transforms of associated small letter quantities. To be

specific, let




() = Foaw)l, 0 = Fin) (1.32)
Xp(f) = Flat)l,  Yo(f) = Flyat)] (1.33)
K3(f) = Fixgt)l,  ¥3(f) = Pyt (1.34)
NE) = Fine)], V() = Pyt (1.35)

Measurement of x(t) and y(t) enables one to compute the quantities

X1(f)s Xp(f), X3(f) and Y(f) when xp(t) and x3(t) are known.

Recognition of the equivalence between Figures 1.5 and 1.6 is a
significant achievement because Figure 1.6 can be solved by well-known
multiple-input/single-output techniques that are derived and discussed
fully in References [3, 4]. These procedures are applicable for input
data that can be Gaussian or non-Gaussian. Independent research on

these matters based on References [5-7] is in Reference 8.

N(f)

X (f) —_) A (f) VI

X2(f) —_—) A2 (f) V5 p'(f)

)

Figure 1.6 Equivalent three-input/single-output linear model
to Figure 1.5 where the three input records can
be correlated.




The basis of multiple-input/single-output procedures for solving
Figure 1.6 is to change the input records by conditioned spectral
density techniques so that X1(f) is left alone, Xo(f) 1is changed to
X2.1(f) where the linear effects of X{(f) are removed from X,(f), and
X3(f) is changed to X3,2!(f) where the linear effects of both Xy (f)
and X(f) are removed from X3(f). These new dinput records, Xy(f),
Xp.1(f) and X3.21(f) will then be mutually uncorrelated aﬁd become the
inputs to the revised three-input/single-output linear model shown in
Figure 1.7, The noise output record N(f) and the total signal output
record Y(f) are the same as before. However, the three previous
separate output records Y;(f), Y,(f) and Y3(f) are now replaced by
three new separate output records Ya(f), Yp(f) and Y (f) that will be

mutually uncorrelated. Also the three previous linear systems Al(f),

A,(f) and A3(f) are now replaced by three new linear systems Li(f),
Lo(f) and L3(f).

N(f)
Uy (f) = Xy(f) Li(f)
| Wyt NG
Ua(f) = X5,1(F) Lo(f) Y(f)
2 2.1ty L2 Y] —)»
U3(f) = X3.9¢(f) L3(f)
3 ettt) 3 L3 V()

Figure 1.7 Revised three-input/single-output linear model
equivalent to Figure 1.5 where the input records
are mutually uncorrelated.
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To simplify the notation, the three mutually uncorrelated input

records in Figure 1.7 will be denoted by U;(f), Up(f) and U3(f) where

Ug(f) = Xy (f) = X(f) (1.36)
Ua(f) = Xo.q1(f) (1.37)
U3(f) = X3.91(f) (1.38)

Figure 1.7 1is now essentially three separate single-input/single-
output linear models where the linear systems L(f), L,(f) and L;(f)

can be computed by the usual spectral relations

Guly(f)
Li(f) = =5 (1.39)

Uiy

6,y (F)
L2(f) = =—7F (1.40)
2( ) Guzuz(f)

6y (1)
Ly(f) = )] (1.41)

usus

The 6(f) quantities are one-sided spectral density functions that can

be computed easily using formulas in References [3, 4].
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Note that the linear system Ll(f) is the same as the overall optimum
linear system Ho(f) between the input x(t) and the total output y(t)

as computed by

H (f) = E-L(—)-" (1.42)
) x f

where ny(f) is the cross-spectral density function between x(t) and

y(t), and Gxx(f) is the autospectral density function of x(t).

Other relations for Figure 1.7 are as follows.

Y(F) = Y,(f) + Y (F) + Y(f) + N(f) (1.43)

Byy(F) =8,y (1) +6,  (F) +8, , () + G (F) (1.44)
_ 2 _

Gy (1) = L1176, (1) = 1yme (f) (1.45)

Gyyyy () = 1Lp(1)1%8, (1) =] (116, (1) (1.46)

6, , (f) = [La(F)1%,  (f) =+2 (F)G,.(f) (1.47)

YeYe 3 Uguq Yu3y yy .

_ 2 2

Gan(F) = 1= 7 (1) = 13 () yu3y<f)]e (f) (1.48)

The quantities yﬁ y(f) (f) and 72 (f) are the ordinary coherence
1 U3y

’ Y
usy
functions between y(t) and the three inputs ui(t), up(t) and uz(t),

respectively.




The quantities Uy(f) and U3(f) in Figure 1.7 are given by

Up(F) = Xp(f) = Lyp(F)X{(F) (1.49)
U3(f) = X3(f) = Ly3(F)Xy(f) - Lp3(f)Up(f) (1.50)
where
_Gy,(f)
M12(f) = g (1.51)
Lachy = o3th) 1.5
13(f) = EIIT?T (1.52)

Loty = Sl " L6y ()
23 822(f) = L1p(f)6(F)

(1.53)

From knowledge of Lj(f), L,(f) and L3(f), the linear systems A,(f),
A>(f) and A3(f) can be computed by the algebraic relations

A3(f) = L3(f) (1.54)
Az(f) = Lz(f) - L23(f)A3(f) (1.55)
AL(F) = Ly(f) = Lyp(F)Aa(f) = Ly3if)As(f) (1.56)
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In terms of more basic spectral quantities, the terms used in

Equations 1,39 to 1.41 to compute Ly (f) La(f) and L3(f) are

Gy, y (F) = 61y () (1.57)
Syjuy (F) = 611(F) (1.58)
Guyy (F) = By (f) = L1(F)6py (F) (1.59)
Bupu,(F) = 622(f) = L12(f)621(F) (1.60)
Guqy(f) = B3y (f) = Ly(F)G31(F) - Lp(f)Gy,(f) (1.61)
Gupuy () = 633(F) - L13(F631 () - L3183y, () (1.62)

where
63u,(F) = 632(F) = L1p(f)63 (F) (1.63)

A1l of these terms are generally required when dealing with non-
Gaussian input data. Note that Guzuz(f) # Gzz(f) and Gu3u3(f) # 633(f)

except for special cases.
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Some further points are worthy of note. The relation
Ll(f) = Al(f) + le(f)Az(f) + L13(f)A3(f) (1-64)
shows that, in general, Ll(f) # Al(f). Thus detemmination of Ll(fL
representing the overall optimum linear system Ho(f) between Xl(f) and

Y(f), is not the same as the actual linear system Al(f) that exists

between X,(f) and Y,(f). The spectral output of yl(t) given by

_ 2
Gylyl(f) = |AL(F)]%6,,(F) (1.65)

will generally differ from the spectral output of y,(t) given by
2
G f) = |L f 1.66
y,y, (B = L0 () (1.66)

Note also that the relation

Lz(f) = Az(f) + L23(f)A3(f) (1-67)
shows that in general that Lz(f) # Az(f). The system Lz(f) represents
the overall optimum linear system between Uz(f) and Y(f). This is not

the same as the actual linear system Az(f) that exists between Xz(f)

and Yz(f). Also, the spectral output of yz(t) given by

2
Gy, y,(F) = 1A2(F)1G5(1) (1.68)
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will generally differ from the spectral output of yb(t) given by
2
= f)|"G f 1.69
However, note the equality relation that
L3(f) = A3(f) (1.70)

where L3(f) represents the overall optimum linear system between U3(f)

and Y(f), while A3(f) is the actual linear system between X3(f) and
Yo(f). In general, since G (f) # Gy3(f), the spectral output of
3 u3u3 33
y3(t) given by
2
= 1.71
Gy3y3(f) [A3(f)]“655(f) (1.71)

will differ from the spectral output of yc(t) given by
2
G, , (f) = Ly (F)|76G, , (f) (1.72)
YeYe 3 u3u3

Example of Figure 1.4

Consider the example of Figure 1.4 where a linear system is in
parallel with only one finite-memory nonlinear system. This example
corresponds to Figure 1.5 where H(f) = Aj(f), a(x) = go(x), A(f) =

Ay(f) and g3(x) = 0. Appropriate formulas for this example are as
follows.
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Uy (f) = x)(f)

Up(f) = Xp(f) = Lyp(f)X ()
Ly2(f) = [G),(f)/6;,(f)]

Ly (f) = [6),(£)/6);(f)]

L,(f)

[6yyy () /6y, ()]

uaua

where
Buny(f) = Goy(F) = Lp(£)6) (F)

By u,(f) = B22(F) - Lyp(F)G2y(f)

Finally, for the systems in Figure 1.3,
A(f) = Ax(f) = Lp(f)

H(F) = Ay (f) = L1(f) - Lyo(F)A(S)

Note that H(f) # Ll(f) unless A(f) = 0.

(1.73)
(1.74)
(1.75)
(1.76)

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

Individual spectral outputs

are
6y, (1) * [H(F) 126y, (F) (1.82)
Gy, (1) = 1A 655(0) (1.83)
Gy y (1) - Ity (£)1%6,,(f) (1.84)
Gy, y, () * (Lz(f)|zGu2u2(f) (1.85)
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The total output spectral density function is given by

6,y (f) = Gyaya(f) + Gybyb(f) + 6 (f) (1.86)
where

TGy () 7y (1), (f) (1.87)

Gy y, (1) * Yuzy(f) (f) (1.88)

6 () =[1- vﬁly( ) - xuzy(f)]s (f) (1.89)

These formulas are general results for Figure 1.4 where the input data
can be non-Gaussian and where X;(f) represents the Fourier transform

of any zero-memory nonlinear system output x(t) = g[x(t)].

This concludes the example of Figure 1.4,




1.5 GAUSSIAN INPUT DATA

A special case of great interest is the case where input data are

Gaussian and where the zero-memory nonlinear systems in Figure 1.4 are
g20x(t)] = x2(t), g30x(t)] = x3(t) (1.90)

This case, shown in Figure 1.8, is the Case 1 single-input/single-

output nonlinear model in References [1, 2].

> AL(F) n(t)
y1(t)
x(t) ) Squarer | ) Ay (f) ) y(t)
x2(t) ya(t)

.____) Cuber _____) A3(f) ]
3t y3(t)

Figure 1.8 Case 1 single-input/single-output nonlinear model
with Gaussian input data.
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The Fourier transforms X,(f) and X3(f) on the related three-
input/single-output linear model of Figure 1.6 have a very special
meaning for this Case 1 nonlinear model. Specifically, X,(f) is the
Fourier transform of xz(t) and X3(f) is the Fourier transform of x3(t)

as denoted by
Xy(f) = ;;7[x2(t)] (1.91)

X300 = Z )] (1.92)

For Gaussian input data, x(t) will be uncorrelated with xz(t) but x(t)
will be correlated with x3(t). It follows that the cross-spectral
density functions Gy,(f) = 0 and Go3(f) = 0. Alsq as shown in

Reference [1], the cross-spectral density function
2

where the variance ai =.E[x2(t)] when E[x(t)] = 0. Here, Ly,(f) = 0
and Ly5(f) = 0 but
Ly5(F) = % (1.94)

The three mutually uncorrelated input records Uy (F), Us(f) and

U3(f) in Figure 1.7 are given now by the simple relations

Uy (f) = X (f) (1.95)

Uy (f) = Xp(f) (1.96)
2

Us(F) = X3(f) = 3o X, (f) (1.97)

Thus, Figure 1.7 becomes Figure 1.9 for the model of Figure 1.8, and
the L-systems can be computed easily by Equations 1.39 to 1.41.




Uy (f) = Xy(f) Ly (f)

Ua(f) = Xp(f) _)’ La2(f) —03

U3(£) = X3(f) - 302X (f) ,l L3(f) |

N(f)

__~_)J(f)

Figure 1.9 Revised three-input/single-output linear model
equivalent to Figure 1.8 where the input records

are mutually uncorrelated.

Specifically for the model of Figure 1.9, the L-systems are given by

the formulas

(f)

6
L = gy

(f)

6
La(f) = ggjﬂ-

6,.y(f)
La(f) = F“'??3y
where

. - 3%, (£
Gu3y(f) G3y(f) 3oxGly( )

- - 9% ()
Gu3u3(f) G33(f) 9°xGII

(1.98)

(1.99)

(1.100)

(1.101)

(1.102)




In place of Equations 1.54 to 1.56, simpler relations between the

linear systems in Figures 1.8 and 1.9 are now

A5(f) = Ly(f) (1.103)
Ay () = Ly(f) (1.104)
AL(F) = Ly(f) - 3oZA5(F) (1.105)

Note that computation of Al(f) requires knowledge of A3(f), and that
AL(f) £ Ly(f) when Ay(f) # 0. Also the relation

L (f) = Ay(f) + 30§A3(f) (1.106)

shows that Ly(f) is a function of the input variance oi and so will
change with different input records. However, the systems Al(fL
Ap(f) and A3(f) in Figure 1.8 are independent of the input variance
when Figure 1.8 is a valid nonlinear model. Thus, conventional linear
system identification techniques where only Ll(f) is computed give

erroneous estimates of A;(f).

This concludes Section 1.
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2. NONLINEAR WAVE FORCE MODELS

Section 2 details a methodology for analyzing parallel linear
and nonlinear systems involving a square-law oberation with
sign. The analysis is applied specifically to the problem of
decomposing random wave forces on a structure into linear
(inertial force) and nonlinear (drag force) components. A
procedure is presented for identifying the individual initial
and drag force parameters based solely upon measurements of the
input wave velocity and the output wave force. The input wave
velocity is assumed to be a Gaussian stationary random process
with arbitrary autospectral density function. Formulas are
stated for random errors in estimates. These formulas are also

useful in the design of experiments.




2.1 FORMULATION OF WAVE FORCE MODEL

Morison's Equation is widely used to study wave forces on
structures, References [7, 9-11], where a wave force output y(t) due

to a wave velocity input x(t) consists of two main components:

(1) an inertial force m(t) that is proportional to the derivative

x(t) of the wave velocity x(t),

(2) a drag_force d(t) that is proportional to x(t)|x(t)|.

Morison's Equation is thus of the form
y(t) = m(t) +d(t) =€y x(t) + C5 x(t)]x(t)] (2.1)

where the exact n~ature of the constants C; and Cp would either be
known or to be determined. In Morison's work, C; and C, are not
functions of frequency. It 1is clear that Figure 1.4 can represent

Equation 2.1 by setting

(2.2)
A(f) = c,

Equation 2.1 can apply to more general situations by allowing C1 and 02 to

be functions of frequency. Figure 2.1 illustrates this wave force problem

for a tall structure in the ocean.




The problem of concern is to determine the spectral properties of the
inertial component m(t) and the drag component d(t) f£rom measurements of

the wave velocity x(t) and the net force y(t). This determination is

difficult for two reasons:

(a) the drag force d(t) has a nonlinear relationship of the type

x(t) |x(t) |, namely, a square-law operation with sign, and
(b) the inertial force m(t) and the drag force d(t) are correlated.

The specific model to be evaluated here is shown in Figure 2.2 where
n(t) is extraneous noise, and H(fj and A(f) are the frequency response

functions of constant parameter linear systems given by the Fourier trans-
forms of weighting functions h(x) and a(x), namely,

HED) =Fh()] = fo' h(e)e 324,
(2.3)

ACE) =Fla(x)] = f 0' a(r)e 32Ty,

The system x|x| is a zero memory nonlinear system with an instantaneous

output w(t) = x(t) |x(t)|. Note that unlike Morison's relationship in

Equation 2.1, the systems H(f) and A(f) are not assumed to be constants

or even real numbers.
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T o

ave velocity input
Xt) —

Figure 2.1 Illustration of wave force problem.

alt)

aft)

x(‘,——'—‘

y{t)

x|x| Al

vit) a(¢)

Figure 2.2 Nonlinear wave force model.




Two problems will be treated for the model of Figure 2.2,

(1) Spectral Decomposition Problem, Given H(f) and A(f) plus.

measurement of x(t) only, determine the spectral properties of m(t)

and d(t). If y(t) is measured as well as x(t), determine also the
spectral properties of n(t).

(2) System Identification Problem. From measurements of x(t) and y(t),
identify the optimum frequency properties of H(f) and A(f) to
minimize the autospectrum of n(t).

2.2 SPECTRAL DECOMPOSITION PROBLEM

Referring to Figure 2.2, assume the input record x(t) is a
sample time history of a stationary (erquic) Gaussian random
process with mean value py = E[x(t;.)] = 0. Nonzero mean value
inputs are treated later in Section 2.4, Tor solve the Decomposition
Problem for the model in Figure 2.2, an approximation is required
for the nonlinear operation x |4 . The third-order polynomial least-

squares approximation is given by using Equation 1.30, namely,

b = oy B+ (s B)

2 3 S S
=k(3oxx+x) k 3°x T

(2.4)

where k is the same as a, in Equation 1.29 and o, 1is the standard
deviation of x(t) defined by

, 1/2 .
L {E [(_x(t) - ux)2]} (2.5)

In words, x|x| can be replaced by the sum of a linear operation plus a
cubic operation. For an 1input x(t) with a zero mean value, this
nonlinear system approximationis Figure 2.3. Substitution of..

P
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x{t) ~——

F
Jka‘

z x(t) |x(t) |

Figure 2.3 Third-order polynomial for x(t) | x(t)].

a(t)

X(C’ ————

SXO‘

)t

v(t)

a(t)
()

y(t}

AL)

d(t)

Figure 2.4 Nonlinear wave force model with correlated
outputs representing Figure 2.2.
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Figure 2.3 for the x|x| operator into Figure 2.2 yields the model shown

in Figure 2.l which, henceforth, is used to approximate the model in Figure 2.2.
Formulas will now be derived to compute the autospectral density functions of
m(t) and d(t) from knowledge of H(f) and A(f),
x(t) and y(t).

using measurements of

It should be noted here that Figure 2.4 is a special case of Figures 1.5

and 1.8 that can be analyzed by formulas in Sections 1.4 and 1.5. However, it

is more instructive to directly develop here the desired formulas for this

special problem. In agreement with physically meésurable results, one-sided

spectral density functions will be used instead of theoretical two-sided

spectral density functions.

In Figure 2.4, for a Gaussian input x(t) with zero mean value and
standard deviation o, the terms m(t), d(t), n(t) and y(t) will also
have zero mean values. Formulas for the Fourier transforms of such records

with long, but finite length T are given by

| T 3
x(6) =F[xt)] = I x (t)e TI2MELy,

0 (2.6)
v(£) =F[y()] = JT y(t)e "I27EEyy

0

It is assumed that x(t) and y(t) can be divided into n; associated sub-
reéords, each of length T, to compute desired averages. Autospectral and

cross-spectral density functions of x(t) and y(t) are then computed for

one-sided spectra by

2 *
G (8) = & [x" r1x(0)]
= 2 gly" (2.7)
G,y (£) = % ely* (5yv(£)]
2 *
Gy (8) = 2 E[x () (£)]
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where the asterisk (*) denotes complex conjugate and E[ ] is

approximated in practice by an ensemble average over n

d
dquantities.

In terms of the functions H(f) ana A(f), Fourier transformg

of the output quantities over long,
yield

but finite length records

Y(E) = M(f) + D(£) + n(f)

(2.8)
M(£) = H(E)X(f)
(2.9)
D(f) = A(£)W(f)
where W(f) is the Fourier transform of w(t) defined by
W(E) = k [302 x(£) + Xy (£) (2.10)
Here, w(t) = k[3ax2x(t) + x3(t)] and
3 ] T3 ~jemfe,, (2.11)
Xy (£) =.'r"[x ] = f e :

The quantity N(f) is the Fourier transform of the unmeasyred

eéxtraneous output noise n(t) that is assumed to be uncorrelated with

both m(t) and d(t);

Figure 2.4 1ig equivalent to the two-input/single—output linear model
shown in Figure 2.5 where the inputs x(t) and v(t) are correlated. Figure

2.5 is a special case of Figure 1.6.




n(t)

R(t ) it H(F) + 3ka§ A(F)

y(t)

V() = kxS (1) | A(f)

Figure 2.5 Two-input/single-output linear model with correlated
inputs that is equivalent to Figure 2.4,




Let y(t)= xs(t] = xs(t) with E[x(t)] = 0. The cross-correlation

function

RXY(T) = E[x(t)y(t+Tﬂ = E[x(t)x3(t+rﬂ
= z[x<t)x(t+r)'x(t+r)x(t+-r)]

For zero mean value Gaussian data, E[y(t)] =0 and a fourth-order

moment breaks up into the product of all possible pairs of second-order

moments, Specif ically,

E[ala2a3a4] =-E[ala2] E[a3a4] + E.[ala3]_E[a2a4]+ E[ala4]§7[a2a3}

Hence, R (1) becomes
Xy

Rey () = 3E[x(t+)x (t41]) Efxterxtesn] = 302 (1)

The corresponding cross~spectrum relationship ig

2 .

ny (f). = 30)(6xx

(£)
This proves by letting. y(t) = x 3(t) = x3(t) that

2

XGXX (£)

Gxx3(f) = 30 (2.12)

Note that

. :
Gxx3(f) = Gxx3‘f) = Gx3x(f)
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The one-sided autospectral density function of x4(t) = xs(t) is

This computation can be done directly. The one-sided autospectral de

function of w(t) is defined by

G, (£) = % g[w*(f)vv(f)] (2.14)

This computation requires some extra work.

A formula will now be derived for Gy, (f) in terms of
Gyy(£) and dxsxz(f). Equation 2.12, proves that x(t)

and x3(t) are correlated with

2
Gxxz(f), = 305G, (£) . (2.15)

Hence. E

2} . 4 | 2 p I

wa(f) g k [QGXGxx(f) + 3°xGxx {£) + 3°xGxx (£) + Gx x (fa
3 3 3%3
= x2|270% (£) + ¢ (f)] (2.16)
e

It follows also that

5 ) |
G, (£) = k[BOxGxx(f) + cxxsgf)] - 6ka’G,_(f) (2.a7)

This shows that x(t) and w(t) are correlated.
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It is now simple to compute the desired autospectral density

functions of m(t) and d(t). From Equation 2.9,

2
A (€Y = (2.18)
Gy (F) = lH(D)] G, (£)

This represents the inertial term in Equation 2.1, Also

2
Ggq (£) = |A(E)]| G (£) (2.19)

where Gy (£f) should be computed using Equation 2.16. This

represents -the drag term in Equation 2.1. The cross-spectral

density function between p (t) and d(t) is obtained using-

Equation 2.17 as follows.

6 .(f) = 2|y Y(rv, (6)] = (B)Aa(e) G (f) (2.20)
ﬂd( ) T m d xW .

- 6koi Y (£)ALE)G, (£)

Thus, m(t) and d(t) are correlated and from Equation 2.8
« .
_(2.21)
ny(f) - Gm (f) + Gdd(f) + G"lde) + Gmd(f) + Gm(f) (2.2]

Note -tha-t computation of Equations 2.18 and 2.1§, involves measurement .
only of x(t), whereas Equation 2.21 requires measurement also of y(t). Wnhen
both x(t) and y(t) are measured, Equation 2.21 can compute the autospectrum
of the unmeasured n(t). Good models occur when Gm(f) is small compared to

G_(£).
Yy
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From Equations 2.16 and 2.19 the drag term can be written

as

, |
2 4 G (f)]
Gyylf) = ¥ |A(E) | 270,68, (8) *+ Oy x, (2.22)

This Gdd(f) ig the sum of two parts obtained by using the

correlated terms x(t) and x3(t).

Gdd (£)

is based upon two terms that are uncorrelated.

An alternative formula for

is derived later in Equation 2.L4 where Gdd(f)

From Equation
2.21, note that

ny.(f), A G _(f) + Gy () + G, (£) {(2.23)

To obtain Gpn(£f), Equation 2.21 shows that

G (£) =G _(£) - 1G_(f) + G, () + G, (F) + G* (£) ] (2.2k)
nn YY ’ M dd md md

A more informative formula for Gun(f) will be derived later

in Equation 2.49.

2.3 SYSTEM IDENTIFICATION PROBLEM

The:starting point for this problem is the model in Figure 2.4
where it is now assumed tﬁe properties of H(f) and A(f) are not
known. These properties will be determined from x(t) and y(t)
based upon minimizing the spectral density function Gpp(f) of

n(t) over all possible choices of linear.systems to predict y(t)




from x(t). It is assumed here that the mean valuye

Px ='E[x(t)] =-0. Nonzero mean value inputs are treated in
Section 2.3.

In Figure 2.4,it follows that
Y(£) = H(£)X(f) + kA'(f)[mix(f) + x3(f)] + N(f) (2.25)

and using Equation 2.15,

2
ny(f) H(f)Gxx(f) + 3koxA(f)Gxx(f) + kA(f)Gxx (£) (2.26)

3

[H(f) ¥ 6kaiA(f)].G (£)

XX

H
eénce, as proved in Reference (2], the optimum linear system is

given by

G, (£) |
H(r) = Elos'= H(E) + 6kola(f) e

XX

This system l{(f) computed from x(t) and y(t) only, gives the

minimum’ Gn,(£) over all possible linear systems. It also auto-

matically makes n(t) uncorrelated with x(t).

Note that Ho(f) # H(f) and that Ho(f) is a function of the input variance

oi. Thus Ho(f) will change with different inputs while H(f) will be the same.

Note also that determination of H(f) requires knbwledge of A(f) as well as
Ho(f). By u;ing Ho(f) instead of H(f), Figure 2.4 can be redrawn as Figure
2.6. This is theﬁ equivalent to the two-input/single-output linear model
of Figure 2.7 where x(t) and u(t) are uncorrelated. Figure 2.7 is a special

case of Figure 1.9. Figure 2.7 can also be derived directly from Figure 2.5.




2
3| Holf) = H(F) + 6k GLA(f)

n(t)

x(t) |

~N

Ly %0

b

Yolt)

u(t)

A(f)

y(t)

yu(t)

Figure 2.6 Nonlinear wave force model with uncorrelated
outputs that is equivalent to Figure 2.4.

~ x(t) 3| Ho(f) = H(F) + 6kaZ A(F) |

u(t) = k03(e) - 302 x(t)] __y,

A(f)

yo&)

yult)

n(t)

y(t)

Figure 2.7 Two-input/single-output linear model with
uncorrelated inputs that is equivalent to

Figure 2.5.
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Fourier transform relations for Figures 2.6 and 2.7 show that Y(f)
is the sum of a linear term Yo(f), an uncorrelated nonlinear term Yu(f),

and an uncorrelated noise term N(f) where

Yo(f) = H (£)X(f) = [H('f) + GkOiA(f)] X(£) - (2.28)
Y (£) = A(E)U(L) = Ka(f) [x3(f) - 3aiX(f)] (2.29)
Hére, the cross-spectral density funqtion
Gy g, () = 0 | (2.30)
Now, noting that the total force is given by

Y(£) = Y, (£) + Y, (f) + N(£) . (2.31)

it follows from Equation 2.30 that the autospectrum of the total

force decomposes into three additive terms, as follows.

£) = .
Syylf) = Gy o (£) + Gy (£) + G (h) (2.32)

This gives the model in Figure 2.6 that is equivalent to Figure 2.k.

The quantity u(t) in Figure 2.6 is not the same as the quantity
w(t) in Pigure 2.4 and U(f) # W(f): . 1p this case,

SR o SO
u(t) k[x (t) 30xx(t)] (2.33)

which has a Fourier transform. from a long but finite record given
by

U(f) ='k[x3(f) - 3oix(f)] (2.34)




Here, x(t) and u(t) are uncorrelated. Using Equation 2.15, the

autospectrum of u(t) is given by

Gmff) = kz[Gx x. (£) = 3ctix3(f) - 3oiG (f) + 90 G, (fq

373
= 2 4 |
k [Gx3x3(f) - goxcxx(f)] (2.35)
Also, from Equation 2.3l,
G g (£) = k[Gx3y(f) - 30' G, (f)] (2.36)
However,
Guy(f) = A(f)Guu(f) (2.37)
Hence, it follows that
Guo (£) Gy () - 3oic;xy(f..)
A(£) = Guy = 3 (2.38)

(£) - 4
uu k[Gx3x3(f) - 90,8y (£1]

where computations for G, x (f) and G y(f) can be done directly from
X3(f) and Y(f), similar to direct computations of Gx.x(f) and ny(f) from
X(f) and Y(f). Equation 2.38 is the desired result to identify the system

A(f).




The system H(f) can now be determined. From Equation 2.27, using
the just computed A(f),

HUE) = Ho(£) = 6koZA(£) (2.39)

This is the desired .result to identify the system H(f).
After A(£f) and H(f) are computed, then all formulas in

Section 2.2 follow. In particular, one obtains desired inertial
and drag results by using Equat ons 2.1% and 2.19. From

Equatione 2.16 and 2.35,

= 26x244 Y
G (E) = 36k 0, Gy (£) + G (£) (2.k0)

Hence, in place of Equation 2.19, one can write

= G £) + G, ., (f) (2.41)

where G d!;dz(f) represents the linear part of the drag term
given by

- 2 4 2 (2.42)
Gdldz(f) 36k ox]A(f)I G,y (£)

and G d_d (£) represents the uncorrelated nonlinear part of
n%“n

the drag term given by

Gy 4 (6) = 1a(f) |26y (f) (2.13)

ndn

Here, Gy,(f) should be computed using Equation 2.35. Thus,

-Gdd(f) is the sum of two parts obtained from the

uncorrelated terms x(t) and u(t), namely,
G, () = |A(f)|2[36kzoicxx(f) + Guu(f)] (2.u4)
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Equation 2.4k is more instructive than Equation 2.22. Further new

results for the autospectral density functions of Y, (t) and

Yy (£) 4n Figures 2.6 and 2.7 are
. ) 2 ’
G £) = :
YoYo( ) [HO(E)I G, (£) (2.45)
using H,(£) from equation .2.67, ang
- 2
Sy y, (B = 1a6) %6 (£) (2.16)

using A(£) from Equation 2.38 ang Cuu (£) from Equation 2.35

Note that Equation 2.46 jg the same as Equation 2.13.

The linear conference function Yiy(f) between the input

x(t) and the total output y(t) is defined by

_ G (£) lG. (£)]?
Y.V
Yz (f) = °. 'O = xy (2‘h7)

XY
ny(f)' Gxx(f)ny(f)

where the G):j Yo (£) is given by Equation 2.45. ne nonlinear

Coherence function qiy(f) is defined here by

G {£)
2 Yo ¥y
] 2.18)
€, (£) ey {

where the Gy y(f) is given by Equation 2.46.. Equation 2.48 is the
_ uJu

same as the linear coherence function between the uncorrelated input u(t) angd

the total output y(t).




In terms of these coherence functions, the ouﬁput noise

autospectral density function is giVen by the simple formula

<[1-v e - & (2.49)
G (6 = [1 - v3, (0 qU(f)] Gyy (£)

Cleariy, this model will be valid at frequencies where the sum
2 .
[Yiy(f) + %q;f)] is close to unity.

2.4 NONZERO MEAN VALUE INPUT

Supposé that the input x(t) has a nonzero mean value
px = E[(x(t)] # 0. For the case where x(t) represents the
velocity of an ocean wave, px would be the underlying current.

When uyg # O, the. input x(t) should be expressed as
- - (2.50)
x(t) = [x(t) ux] +u,

consisting of a variable input term [x(t) - uy] with zero mean
value, plus a constant term py. Now the cubing operation

xj(t) becomes
' 3
x? (£) = _[[x(é) -u ] + ux}

: - ' » 2
= [xte) - ux]3 + 3 fee) = u ] 3 xie) - u e wp?

where the final constant term u3

(2.51)

produces an effect in the

spectrum of x3(t) only at £ = O+ For £ ¢ 0, Equation 2.51.
shows that the diagram in Figure 2.8 should represent the nonlinear
Operation x3(t) for the input [x(t) - ux]. Note that Figure

2.8simplifies to the cubic operator by itself when u = 0.




2
J(II:)

o2 _ , 3
[x(t)-ux] (x-w,) > 3 x3(e)

(x-ux)3

Figure 2.8 Nonlinear system for x3(t) when M, # 0.

> 3k(c:¢u:)
) 21,
E("'"x] 1 (x-u,) > 3w,
3
> (x-wy) k-

Figure 2.9 Nonlinear system approximaﬁigg:x(t)[x(t)l
when M # 0. '
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Consider next the nonlinear operation x(t)[ x(t)l of a
square-law system with sign which is represented by the

least~squares approximation of Equation 2.4, namely

x (€)% (£)] = 3ko2x (£) + kx>(t)

2.52
ol 3 (2.52)
- 3ax 'n

Here from Equation 2.50,

13
x(t)|x(t)]| = 3k°i {[x(t)'"x] + ux} + k{[x‘t)-ux] + ux}

= k I:x(t)-ux]3 + 3ku, x(t)-ux]2

2, 2 ) 2 . 3
+ 3k(of + ol xt) -] + k(30Qu ) (2.53)

where the final constant term k(BO,%ux + ux3) produces an

effect in the spectrum only at £ = 0. For £ ¥ 0, Equation 2.52

shows that the diagram of Figure 2.9 should represent the nonlinear
“ operation x(t) |x(t)] for the input [x(t) - uyx). Note that

Figure 2.9 simplifies to Figure 2.3 when u =0,




Return now to the original problem covered by Figure 2.4. For
situations where the input changes to [x(t)-u J with uy ‘o,
‘Figure 2.4 becomes the new extended Figure 2.10. For Gaussian data, a
linear output is uncorrelated with tﬁe output from a square-law operation
but is correlated with tﬁe output from a cubic-law operation. Hence, in
place of Figure 2;6,umen the input changes to [x(t) - ”x] with . £ 0,

Figure 2.6 becomes the new extended Figure 2.11.

The optimum linear system Ho(f) in Figure 2.1lljs computed as

before by the equation

B (£) = Z—’iY%)T (2.54)
° XX

In terms of H(f) and A(f), one finds that
- 2 2016
E (£) = H(f) + 6ko A(£) + 3ku, (2.55)
(o]

Note this reduces to Equation 2.27 when V¥x = 0. 1In Figure 2.11,

the Fourier transform U(f) of u(t) is given in place of Equation

2.34 by :
wE) = k[x;(6) + 3ux,(0) - 3o:x<f)] (2.56)

where

X(£) ,-}f{[x(t)—ux]} (2.57)
X, (£) =?[[x(t)-ux]2} (2.58)
X4 (£) =?‘[[x(t)-'ux]3} (2.59)




[x(t)-u*]——-—w

m(t) a(ey

H{f)

2, 2
ak (axﬂ;x)

Y (¢)

(x-ux) 2

3kllx z vit) P A(L) d(t

(x-u‘)

Figure 2.10 Extention of model in figure 2.4
when “x # 0.

a(e)

x,]

E (f)
(o)

.Yc(f')

kad‘ 2 yets

(x-y_} 3ky * E Alt)
2 = u(t) Y (t)
u
(x-u,)’ > k
Figure 2.11 Extention of model in figure 2.6

vhen My # 0.




One should now proceed as was done previously to compute
G (f) and G (f) where
uu uy

Gy (£) = %E[U(fﬂﬂfﬂ (2.60)

Gyy (£) = %E[ U(f)Y(fﬂ (2.61)
Then , the system A(f) is computed by

Gyy (£)

A(f) = S TEY (2.62)

and from Equation 2.55, the system H(f) is computed by
= - 2
HIE) = Ho(£) - 6k a(e) - 3kula(e) (2.63)
The inertial component m(t) in Figure 2.10 has the autospectrum
G () = [H(£) | %6 (£) (2.64)
XX
The drag component d () in Figure 2.10 has the autospectrum

Gaat®) = [a() )%, (6) (2.65)

vhere va(f) in Figure 2.10 should not be confused with cuu(r) in Figure
2.11. The output w(t) in Figure 2.10 is quite different from the output
u(t) in Figure 2.11. Also, the output m(t) in Figure 2.10 is quite

different from the output yo(t) in Figure 2.11.




The quantity Gw(f) is computed by the usual formula

G 5) = 22" (1w ()] (2.66)
where W(f) 1is given by

WiE) = k[xy(6) + 3uXp(£) + 3ol x(6) (2.67)

Note that Equation 2.67 reduces to Equation 2.10 when uy = 0.

The relationship between U(f) and W(f) is given by

W(E) = U(E) + 3k(202+u2)x(£) (2.68)

which leads to the autospectral density function
£) = £) + 9k2(202+u2)26' '(f) (2.69)
wa-( ) G | X x' Txx

This result extends Equation 2.30 for uy # 0 and occurs

because

G. . (£) =0 (2.70)
2
2
Gxx3(f) = 3°xGxx(f) (2.71)
Thus, in place of Equation 2.65, one can write

£5 126, (£) + 9k2(2 2+22|Af|2 £)  (2.72)
Gyq(E) = |A(£) | “Gyy (£) g tu) .( M6, () .

These two parts of Gdd(f) fepresent -\incqrrelated nonlinear

and linear parts of the drag term. Equation 2.72 reduces to

Equation 2.44 when uy = 0.




Formulas derived in Section 2.LforUy # 0 have been shown

to be extensions of corresponding formulas in Section 2.2 and 2.3

vhere Ux = 0. 1In place of Equations 2.45 and 2.46, when
“'x 7‘ o,

2 2.
Gyoyo (£) = |H,(£)] G, (£) (2.73)

using Ho(r) from Equation 2.54, and

using A(£f) from Equation 2.62 ang Gyuu(f) from Equation 2.60.

‘The linear coherence function Yiy(f) is here

(£)
Y2 oyo

(£) = (2.75)
y yy(E)

using the Gy Yo ¥, (£) from Equation 2.73, and ‘the nonlinear

coherence function qu(f) is_

G (£)
q:‘:y(f) - gﬁ%)__ (2.76)
yy (£

using the Gyuyu(f) from Equation 2.7k, 1In terms of the

coherence functions from Equations 2.75 and 2.76, the output

noise autospect;al density function is now

= [1-v2 (£)-q2 2.77)
San (8 = [2-v2, (0192 (0)] 6 (0) (2.71
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2.5 RANDOM ERRORS IN ESTIMATES

Referring back to Figure 2.5 and Equations 2.68 through 2-32,
one can view the model in Figure 2.5 as atwoeinput system with
uncorrelated inputs as shown in Figure 2.T.In this .form, the
random errors to be expected;in the computation ‘of certain
critical parameter values are given directly from Reference [1]

In terms ofithe normalized random error (coefficient of

variation) of an estimate ¢,defined by -

f[ﬂ“ 7(¢] (2.78)
the random errors for four important parameter values may be
approximated as follows:

A2
e[yiy(f)} = ’/7[1 ny(f)] (2.79)
/g1y ()]
‘ i
22
~ l-y_,(£f)
e[lao(f)l].[ XY _ ] (2.80)
/indley(f)l
- ﬁ l"' (f‘
e[q:y(f] [q"i ] (2.81)
Y (n d-li[qu(f)l
a2 X
a 1-q__(£f)
e[lAae)]] = [,y 0] | (2.82)

/gD g, (6]

These formulas can also be used to determine the required values

for Ny to achieve acceptable random errors for these four parameter
values under assumed conditions for the coherence functions.

This concludes Section 2.
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3. NONLINEAR DRIFT FORCE MODELS

Section 2 details a mathematical procedure to determine
the spectral decomposition of nonlinear drift forces due
to random ocean waves hitting a floating structure such as
a ship. More generally, it shows how to determine the
spectral decomposition of random data passing through
parallel linear and nonlinear systems, where the nonlinear
system involves a square-law envelope detector. Different
linear operations that may be present in the parallel
linear and nonlinear paths can be identified based solely
upor. measurements of the input data and total output data.
The input is assumed to be a Gaussian stationary random
process with arbitrary autospectral density function.
Formulas are stated to evaluate statistical errors in
various estimates made from measured data. These formulas
can also be used to design experiments that will achieve

desired statistical errors.




3.1 FORMULATION OF DRIFT FORCE MODEL

The general problem to be analyzed for slowly varying drift
forces on floating structures is shown in Figure 3.1. A shio is
assumed to be subjected to random ocean waves represented by
the wave elevation input x(t). This produces a force F(t) on
the ship that results in the ship motion output y(t). The
spectral decomposition of y(t). is desired that is due to x(t).
Random data analysis techniques from References [(3,4] will be

applied to obtain desired results.

Wave elevation input . Ship motion output y(t)

x(t)

Force .on Ship
F(t) —>

Figure 3.1 Illustration of drift force problem.

The force F(t) acting on the ship in Figqure 3.1 is assumed
to consist of two components:
(1) a linear term that is proportional to x(t),

(2) a nonlinear term that is proportional to the squared enve-

lope signal of .x(t).. .. .- ... o




This nonlinear term is called the slowly varying drift force,

References [12+14]. Thus the force F(t) acting on the ship can

be expressed as

F(t) = kyx(t) + kyu(t) (3.1)
where
x(t) = wave elevation input ' (3.2)
u(t) = squared envelope sighal of x(%) : (3.3)
k{/k, = proportionality constants (3.4)

Equation 3.1 can be made to apply to more general situations by
letting k1 and k2 be functions of frequency. This will be
done in the following development.

The ship motion output y(t) in Figure 3.1 will be represent-
ed by the nonlinear drift force model in Figure 3.2 such that the

total output record

y(t) = y,(t) + y,(t) + n(t) | (3.5)
where
yl(t) = 1linear output due to x(t) (3.6)
yz(t) = uncorrelated nonlinear output due to u(t) (3.7)
n(t) = pncorrelated zero. mean Gaussian output noise (3.8)

In Figure 3.2, the quantities Hl(f) and Hz(f) are frequency
response functions of constant parameter linear systems that

incorporate the constants k and k2 from Equation 3.1.

1
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= Hl(f) n(t)

Ly (%)
x(t) ——— — y(t)
Square-Law
—>| Envelope |————> H,(f) |
Detector u(t) Y, (t)

Figure 3.2 Nonlinear drift force model.

Twc problems will be treated using the model of Figure 3.2.

(1) Spectral Decomposition Problem. Given Hl(f) and H, (f)

plus measurement of x(t) only, determine the spectral pro-
perties of y;(t) and y,(t). If y(t) 1is measured as
well as x(t), determine also the spectral properties of

n(t).

(2) System Identification Problem. From measurements of

x(t) and y(t), identify the optimum frequency response
functions Hl(f) and Hz(f) to minimize the autospectrum

of n(t).

A similar analysls was previously carried out in Section 2 for the nonlinear
wave force model of Figure 2.4 that.represents Figure '2.2. No*: “hat Figure
3.2 1s a special case of Figure 1.4 and can be replaced by an e; .alent

two-input/single-output linear model using the inputs x(t) and u(t).




3.2 BASIC FORMULAS FOR NONLINEAR DRIFT FORCE MODEL

In the nonlinear model of Figure 3.2, the linear output term
yl(t) is due to x(t) passing through a constant parameter
linear system defined by the frequency response function Hl(f)'
The function Hl(f) is the Fourier transform of a linear weight-

ing function hl(r) such that in the time domain

yl(t) = jn hl(r)x(t - 1)dt (3.9)

-0

and in the frequency domain
Y, (£f) = Hy (£)X(f) (3.10)

where X(f) and Yl(f) are Fourier transforms of x(t) and

y,(t), respectively. Theoretically,

-}

H, (f) = f hl(r)e'jz"ffdr (3.11)
X (£) =f x(t)ye 32mEtgy (3.12)
Y, (F) = f yl(t)e'jz"ftdt (3.13)

It is assumed here and in following formulas that mean values are
always removed prior to computing Fourier transforms.

The nonlinear output term yz(t) in Figure 3.2. is due to x(t)
passing through a square-law envelope detector to produce u(t),
followed by u(t) passing through a constant parameter linear

system described by a frequency response function H,(f). The




functicn Hz(f) is the Fourier transform of a linear weighting
function hz(r) where, in general, hz(r) # hl(r) and

Bz(f) # Hl(f). In the time domain

y,(t) = jF hy(u(t - 1)dr (3.1k)

x©

and in the frequency domain

Y, (£f) = Hy(£)U(f) (3.15)

where U(f) and Yé(f) are Fourier transforms of u(t) and

yz(t), respectively. Theoretically,

H, (£) =f h, (1)e 32" Tq (3.16)
ulg) = u(r)e 32mdtay (3.17)
Y, (£) =f yz(t)e'jz"ftdt (3.18)

As proved in Reference [3], the output u(t) of the square-

law envelope detector is given by
u(t) = x2(8) + () (3.19)

where

~

X(t) = Hilbert transform of x(t) (3.20)

When x(t) has a zero mean value, then X(t) will also have a
zero nmean value. However, the mean value of wu(t), denoted by

E[U(t)] ’ is
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My = Efu(t)] = Zoi (3.21)

from Equation 3.19 and the fact that

2

(
% (3.22)

E[x2(t)] = E[R2(£)] = o

As usual, the notation E[ ] denotes the expected value of the
quantity inside the brackets. The Fourier transform of x(t),

denoted by §(f), is
~ ® o~ -j2Tft
X (£) =f X(t)e 3T Fqe (3.23)
Now, Fourier transforms of both sides of Equation 3.19 vyield
0 -~ -~
u(f) = Jr [X(2)X(f - o) + X(a)X(f - a)]lda (3.24)
- Q0

Reference [3] also proves that

X(f) = B(£)X(£) (3.25)
where
=3 £ >
B(f) = -jsgnf = 0 £ = (3.26)
j f <0
Hence
U(f) = j. [1 + B(a)B(f - a)]X(a)X(f - a)da (3.27)

and Equation 3.15 becomes




Yz(f) = Hz(f) j. [1 + B(a)B(f - a)]X(a)X(f - a)da (3.28)

Equations 3.10 and 3.28 show how to compute Y,(f) and Y,(f)
from knowledge of X(f), Hl(f) and Hz(f). Equations 3.24 to
3.27 show how to compute. §(f) éndA U(f) from knowledge of
X(f).

The factor B(a)B(f - o) in Equations 3.27 and 3.28 can be

determined as follows. From Equation 3.26, the quantity

-j >0
B(a) = 0 =0 (3.29)
J <0
Ar. appropriate plot for B(a) 1is
B(a)
3
5 —== Q
-3
From Equation 3.26, the quantity
-3 a < £
B(f - &) =4 0 a = f (3.30)
] a > £




Hence, for any £ > 0, an appropriate plot for B(f - a) is

B(f -a)

=]

while for any f < 0, an appropriate plot is

B(f -a)
A
J
—>»
~f 9
- -3
Thus, for any f > 0, the product
1 a <0
B(a)B(f - a) = -1 0 <ac<f (3.31)
1 a > £

while for any £ < 0, the product




-
N
H

B(a)BR(f - a) = -1 f < <0

[
Q
v
o

At values of a =0 and «a £, note that

B(a)B(f - a) = B(O)B(f) =0

Before applying these formulas, a brief discussion will be given

on previous drift force models.
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3.3 PREVIOUS DRIFT FORCE MODELS

Previous drift force models, such as those assumed in
References (12-14] are . considerably more complicated be-
cause of employing a bilinear (quadratic) weighting function
hZ(ti’tb) and bilinear (quadratic) frequency response
Hz(f,g) function to represent the nonlinear path. Specifically,
Figure 3.2 is extended to a more general Figure 3.3 where yl(t) is

the same but yz(t) is replaced in the time domain by

yy(t) = ‘r ) hz(Tl,Tz)x(t - Tl)x(t - 1,)dT,d1, (3.34)

-

and in the frequency domain by

Y2(f) = ‘( Hz(a,f - a)X(a)X(f - a)da (3.35)

-0

Here, X(f) and Yz(f) are Fourier transforms of x(t) and
yz(t) , respectively, while the bilinear frequency response
function Hz(f,g) is the double Fourier transform of the bilinear

weightihg function hz(‘t‘l,“t’z), namely,

© -j211(f1'l+ 312)
H,(f,9) =f-w hz(rl,'rz)e d*rld‘r2 (3.36)
This bilinear frequency response function Hz(f,g) in two
frequency variables f and g 1is much more difficult to compute
and interpret than the alternative Hz(f) in Fiqure 3.2. Mathematical
developments of bilinear functions are contained in References [1,2]. Some books

that discuss these matters are References [1L4,15,16].




Hl(f)

Yl(t) n(t)

x(t)

y(t)

L__,[‘ﬁ . ‘.
| ¥, ()

Figure 3.3 Parallel linear and bilinear systems.

Comparison of Equation 3.35 for Yz(f) in Figure 3.3 with
Equation 3.28 for Y,(f) in Figure 3.2 shows that the same Y, (f)

will occur if
Hz(a,f - a) = Hz(f)[l + B(a)B(f - a)] (3.37)

Thus, knowledge of the linear frequency response function Hz(f)
in Figure 3.2 canyield an equivalent bilinear frequency response
Hy(a,f - a) for Figure 3.3. However, knowledge of the bilinear
fréquency response function Hz(a,f - a) will not yield an
equivalent linear frequency response function Hz(f) for Figure 3.2
To explain this matter, note from Equations 3.31 and 3.32
that the function [1 + B(a)B(f - a)] will be zero for
0 <a < f when f > 0, and will be zero for £ < a < 0 when
f < 0. PFor these values of o and f, one cannot solve
Equation 3.37 for H,(f) to satisfy an arbitrary
Hz(a,f - a) # 0. Even when the factor [1 + B(a)B(f - a)]# 0,

from Equation 3.37, Hz(f) must satisfy




Hz(a,f - a)

Hy(£) = (3.38)
[1 + B(a)B(f - a)]

This requires the right-hand side to be independent of &, a
situation that is highly unlikely to occur in practice for an
arbitrary Hz(a,f - a). The conclusion is that* one cannot use
past results about Hz(a,f - a) to determine an equivalent
Hz(f) for Figure 3.2. Instead, future work should be based on

new results obtained by following the procedures described in

this report.
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3. SPECTRAL DECOMPOSITION PROBLEM

For Figure 3.2,the Fourier transform of Equation 3.5 proves

that
Y(£) = Y (£) + Y, (f) + N(f) (3.39)

where
Yy (£) = Hy(£)X(£) .- (3.40)
Yo (£) = H,(£)U(f) | (3.41)
N(f) = Fourier transform of n(t) (3.L2)

Equation 3.39 will be used henceforth in place of Eguation 3.5
and all further analysis will be done with frequency domain
quantities.

As derived and illustrated in References [3,4], from knowledge
of X(f) and 'Y(f) for a number of different statiomary random records of
length T , their one-sided (f > 0) autospectral and cross-

spectral density functions can be computed by the direct form-
ulas

_ 2 *
G . (f) = 7 E[X (£)X(£)] (3.43)

= 2 * LL)
ny(f) = E[Y (£)Y(£f)] (3

_ 2 oro* L
ny(f) =7 E[X (£)Y(£)] (3.L5)

This procedure does not require the computation of any associated

autocorrelation or cross-correlation functions.




Frcm Equations 3.39 to 3.42, the total output autospectral

density function is given by the formula

= b
ny(f) Gylyl(f) + Gyzyz(f) + G, (f) (3.46)
where
2
= ok
Gylyl(f) |8, (£) | Gyy (E) (3.47)
. 2
= L
Gyzyz(f) |H2(f)| G,y (E) (3.L8)
G, (£) = autospectrum of n(t) (3.49)

The cross-spectral dJdensity function between y,(t) and yz(t),

namely,

*
Gylyz(f) = H) ()Hy(£) G, (£) =0 (3.50)
because x(t) being Gaussian makes
Gxu(f) =0 (3.51)
Also, assumptions about n(t) make
G = G = .52
yln(f) yzn(f) 0 (3.52)

The spectral qua_ntity ‘Gu'u(f) .'in Equation: 3.48 - can be computed
knowledge of U(f) for a number of different stationary random
records of length T by the direct formula

. ) .

Gy (£) = 2 E[U (HU(E)] (3.53)

Since U(f) 1is ¥nown from X(f), EFquation 3.53 actually shows that

Guu(f) is a function of X(f).
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A useful theoretical formula is derived in Section 3.8.1 to
compute Guu(f) from knowledge of the input autospectral density

function Gxx(f)' For any f > 0, the formula is

(=]

Guu(f) = 4 j; Gxx(u)Gxx(f + a)da + 4 j; Gxx(a)Gxx(a‘_f)da (3.54)

Another theoretical formula is derived in Section 3.8.2 that shows
how to compute Guy(f) from knowledge of the input/output cross-

bispectrum Gxxy(f,g) where

Gygy (£:9) = ELX (D)X (Y(£ + g)] (3.55)

For any £ > 0, this formula is

Guy(f) = z./; Gxxy(-a,f-+a)da +2 ]; Gxxy(a,f-u)du (3.56)

Equation 3.54 is applicable to both the spectral decomposition
problem and the system identification problem, while Equation 3.56
is applicable only to the system identification problem.

The spectral decomposition problem has now been solved.
From measurement only of x(t), one can compute Gxx(f) and
Guu(f). Then from knowledge of Hl(f) and Hz(f), one can

compute- the linear part of the output autospectrum Gy y (£) due
171

to the wave elevation force by Equation 3.47 , and the nonlinear

part of the output autospectrum (f) due to the nonlinear

G
YoY,
drift force by Equation 3.48.
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If y(t) is measured as well as x(t), then one can
ccnpute ny(f). It is now possible to obtain the output noise
autospectrum Gnn(f) from Equation 3.4L6 by the formula

Gop(f) = ny(f) -G (£) - (£) (3.57)

G
1Y, YoY,

Note also that if Gnn(f) is zero, then ny(f) can be predicted

without measuring y(t) by the formula

ny(f) = (£) + G (£) (3.58)

G
¥1Y; Y)Y,

CoLerence functions are required to evaluate statistical
errors in estimates to be given in Section 3.7. The linear coher-
ence function Y;Y(f) between the input x(t) and the total

output Yy (t) is defined by

2 G f
2 |Gyy (£ | yy vy ©
ny(f) = = T (3.59)
Gxx(f)ny(f) gy £
This gives the percentage of the total output autospectrum due
to the linear operations on x(t). A nonlinear coherence function
qiy(f) can be defined here by
G (£)
Y5Y
02 (f) = —2°2 (3.60)
xY G, ()
Yy

This gives the percentage of the total output autospectrum due
to the nonlirear operations on x(t). In terms of these two
coherence functions, the output noise autospectrum of Equation

3;57 becomes




- 2 2
G ,(f) = [1 - yxy(f) - qu(f)]ny(f) (3.€1)

Figure 3.2 will be a good nonlinear drift force model at those

frequencies where Gnn(f) is close to zero, namely, where the

sum [Yiy(f) + ciy(f)] is close to unity. Otherwise, Figure 3.2

is a poor model.




3.5 SYSTEM IDENTIFICATION PROBLEM

Assume now that the system properties of Hl(f) and Hz(f)
are not known in Figure 3.2. Optimum properties are to be identified
from measurements of x(t) and y(t) based upon minimizing the
autospectrum Gnn(f) of n(t) over all possible choices of
linear systems to predict y(t) from x(t). It is assumed as
before that x(t) follows a Gaussian distribution with zero
mean value. Nonzero mean value inputs are treated in Section 3.6.

In Figure 3.2, from Equations 3.39 to 3.42, the basic Fourier

transform relation is

Y(£) = Hy(£)X(£) + Hy(£)U(f) + N(f) (3.62)

where X(f), U(f) and Y(f) can be calculated from the given
x(t) and y(t). From Equation 3.62, the cross-spectral density

function ny(f) between x(t) and y(t) satisfies

ny(f) = Hl(f)Gxx(f) (z.63)
provided that
Gxu(f) =0 (3.64)
- .6
G, (f) =0 (3.65)
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Equation 3.64 occurs because x(t) and u(t) will be uncorre-
lated when x(t) 1is Gaussian data. Equation 3.65 occurs by
assuming x(t) and n(t) are uncorrelated.
From References [3,4], the optimum linear system Ho(f)
between x(t) and vy(t) 1is given by the formula
(£)

G
Ho(f) = XY _ (3.66)
Gxx(f)

For Figure 3.2,from Equation 3.63,

(£) =39, (£)
Hy (£) = X - |H, (£) |e 1

Gxx(f)

(3.67)

Thus Hl(f) is the same here as the optimum linear system
Ho(f) that produces the minimum G__(f) at all £ over all
possible linear systems. The optimum system automatically makes
n(t) uncorrelated with x(t) so that Equation 3.65 applies
without the necessity to assume in advance that x(t) and n(t)
will be uncorrelated. Equation 3.67 shows that the complete Hl(f)
in both gain and phase can be identified using only x(t) and
y(t).

From Equation 3.62, the cross-spectral density function

G_ . (f) between u(t) and y(t) satisfies

uy
Guy(f) = H,(£)G,,(f) (3.68R)
provided
Gux{ =0 (3.69)
G, (f) =0 (3.70)




These two results follow from Equations 3,64 and 3.65. They also
occur because x(t) and u(t) will be uncorrelated whea x(t)
is Gaussian data, and because n(t) and u(t) will be automati-
cally uncorrelated when Hl(f) satisfies Equation 3.67. For

Figure3.2, from Equation 3.68 ,

G, (f) =3¢, ()
Hy(f) = 2 — = |u,(8) e ° (3.71)

Guu(f)

In practice, Guu(f) can be computed directly by Equation 3.53

and Guy(f) can be computed directly by

E[U*(f)Y(f)] (3.72)

3o

Guy(f) =

Since u(t) is known from x(t), Equations 3.53, 3.T1 and 3.72 show
that the complete Hz(f) in both gain and phase can be identified
using only x(t) and y(t). Alternate theoretical ways to
compute Guu(f) and Guy(f) are given in Equations 3.54 and 3.56,
b.sed upon derivations in Sections 3.8.1 and 3.8.2. A different new
theoretical way to identify Ho(f) is derived in Section 3.8.3

After H;(f) and H,(f) have been computed by Equations 3.67
and 3.71, respectively, the spectral decomposition problem can then
be solved using Equations 3.47 , 3.48 , and 3.5T. To evaluate
statistical errors in estimates, one should also compute the linear

coherence function Yiy(f) by Equation 3.59 and the nonlinear co-

herence function qiy(f) by Equation 3.60.




3.6 NONZERO MEAN VALUE INPUT

Suppose that the Gaussian input x(t) has a nonzero mean value given by

u = Elx(t)] #0 (3.73)

Then x(t) can be expressed as

x(t) = |x(t) - ux] * oy (3.74)

consisting of a variable input term [x(t) - u ] with zero mean value, plus
a constant term My Here X(t), the Hilbert transform of x(t), will

u= = B[X(t = B(0 =0 2.T5

and B(0) = 0 from Equation 3.26. In place of Equation 3.19, the output of

the square-law envelope detector is now given by w(t) where w(t) is

2 2

w(t) = {[x(t) -] +u} +%(t)

2
X

(x(t) = ? + %000+ 2 [x(t) - u )+

u(t) + 2ux[x(t) - ux] + ui (3.76)




.~

2
The last term /Jx produces an effect in the spectrum of w(t) only at

f =0. For f#0, Equation 3.76 consists of a nonlinear square-law enve-
lope detector in parallel with a linear operation 2u, as shown in Figure 3.k,

Note that Figure 3.4 simplifies to the square-law envelope detector by itself

when u_ = 0.

X
Zux
[x(t) - u] w(t)
Square-Law
Envelope
Detector u(t)

Figure 3.4 Nonlinear system when wu_# 0.

Return now to the original problem covered by Figure 3.2. For situations
where the input changes to [x(t) - “x] with My # 0 , Figure 3.2 becomes
the new extended Figure 3.5. In Figure 3.5, the two outputs yl(t) and ys(t)

will be correlated because of the linear operation in the nonlinear path.




y; (£
- H,(f)
1 n(t)
[x(t) - u,l y(t)
= 2,
Hy (£)
w(t) y3(t)
Square-Law
— > Envelope u(t)
Detector

3.5 Nonlinear drift force model when My # 0.

The optimum linear system Ho( f) in Figure 3.5 is computed as before by

the equation

G
Ho(f) = xY(f)

G ()

= Hl(f) + Zuxﬁz(f) (3.77)

Note that Ho(f) is now a function of both Hl(f') and Hz(f). Figure 3.5
should now be revised so that Hl(f) is replaced by Ho(f) to produce a
new output y,(t) in place of yl(t). The output y.(t) in Figure 3.5 will
then become the previous output y,(t) in Figure 3.2 and will preserve the

sum

Y1(8) + y3(t) = y,(t) + y,(t) (3.78)




This will give Figure 3.6 where the two outputs y,(t) and y,(t) will be

uncorrelated because of the properties of H (f) and the Gaussian nature of
o

the input [x(t) - ux].

Y4(t)

H (f)
o

(x(t) - u.l

L Square-law }——=4 H,(f)
Envelope u(t)

Detector

n(t)

y(t)

yZ(t)

Figure 3.6 Equivalent model to Figure 3.5.

The following Fourier transform relations are satisfied by the quantities

shown in Figure 3.5 and 3.6. Various applications are feasible depending upon

what is known and what can be measured.

X(E) = Fx() - w.]
U(E) = Flu(t) - ]
W(E) = Flw(t) - )]
Y(E) = Fly(®) - )

Also, for f # 0,

W(E) = UCE) + Zuy X(E)
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V() = Fly(e) -y 1= HOXE) (3.84)
Y,(8) = Fly, () - by 1 = Hy(EUCE) (3.85)
V(8 = Flys(e) - wy ] = (WD) (3.86)
Y,(£) = Fly,(t) - by, 1= B (XD (3.87)

where Ho(f) is given by Equation 3.77. The output term
Y(f) = Y,(f) + Y,(£) + N(£) (3.88)

From Equation 3.88, the output autospectral density function is

ny(f) = Gy4y4(f) + Gyzyz(f) + Gnn(f) (3.89)
where
- 2
Gy, (D = [Hg(D 176D (3.90)
2
() = |H,(H)|°G . () (3.91)

Gnn(f) = autospectrum of unmeasured
extraneous output noise

From knowledge of Hl(f), Hz(f) and x(t), one can compute H, (f), Gxx(f)
and Guu(f) so as to be able to predict Yy4y4(f) and Gyzyz(f). When
Gnn(f) = 0, this will predict the total output spectrum ny(f).

To identify the optimum system properties of H,(f), Hl(f) and Hz(f)

from measured input/output data, the appropriate equations to use are

Gy (£) = Ho(£)Gy (£) (3.92)

Gyy () = Hy(£)G,,(£) (3.93)
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As in Section 3.5, from measurementsof x(t) and y(t), one can
compute the spectral quantities shown in Equations 3.92 and3.93 . This

gives

G, (£)
Ho(f) = 2L— (3.9%)

Gy (D)

(f)
H,y(f) = it (3.95)

Gy (D
Then, from Equation 3.77
Hy(£) = HJ(£) - 2u H, () (3.96)

Other spectral relations of possible interest for special applications

when My # 0 are

Gy, @ - H,(5) %6, (£) (3.97)
Gy, () = [H4,(0)17G,,(9 (3.98)
G(5) = Ggy(B) + 4l G_ () (3.99)
ICRE NGLAGEME (3.200)
';y2y4(f) =0 (3.101)

This completes the analysis for nonzero mean value inputs.




3.7 STATISTICAL ERRORS IN ESTIMATES

Return back to Figure3.2and the equations in Sections 3.b4
and 3.5. For this error analysis, replace Figure 3.2 by a two-input/
single-output linear model with uncorrelated inputs x(t) and u(t) as shown

in Figure 3.T.

n(t)

x(t) ——————————m Hl(f)

yl(t)

y(t)

u(t) ————— Hy(f)

Y, (£)

Figure 3.7 Two-input/single-output linear model
for Figure 3.2.

Statistical random error formulas will now be stated for

estimates of the following six quantities. These formulas are

derived in Reference [3] and summarized in Reference [Li].

(1) @& (£) computed by Equation 3.47

Y1¥1
(2) Gyzyz(f) computed by Equation 3..48
(3) ?iy(f) computed by Equation 3.59
A2 .
(4) q xy(f) computed by Equation 3.60
(5) ﬁl(f) computed by Equation 3.67 '
(6) az(f) computed by Equation 3.71,




The normalized random errors for the two output spectra

estimates G (f) and G (f£) are approximated by
Y ¥4 Yo¥,
(2 - 32,0112
e[Gy v (£)] = (3.102)
171 A
¥,y (£) 1 Vg
_ A2 1/2
X [2 qu(f)]
e[G

v.y (£)] = (3.103)
272 |4y (8) [ VA =T

where nj4 is the number of independent averages used to compute
the original spectral density quantities. Required values of

ny to achieve desired values of e[G (f)] or e[a (£)1]

Y Yy Yo¥s
are obtained by solving Equations (73) and (74) for n

The normalized random errors for the two coherence function

estimates §iy(f) and aiy(f) are approximated by

/Z [l - ?iy(f)]

e{wTiy(f)] = (3.104)
[Yyy (£ 1 /Rg
/T (1 - 42 ()
e[éiy<f)1z [ xy (O] (3.105)
|qu(f)| /nd-l
Bias errors for these estimates are
~2 2
1 - (f)
b[§iy(f)] ~ [ ny ] (3.106)

g




bld, (f)] = XY (3.107)

These bias errors are over and above the random errors.

Normalized random errors for the frequency response function
estimates ﬁl(f) and ﬁz(f) are required for both gain factor
estimates and phase factor estimates. For gain factor estimates
!ﬁl(f)[ and |ﬁ2(f)\, the normalized random errors are approxi-
mated by

(- 32,012

e[|H (D) |1 = (3.108)
Iny(f)I /ind
52 1/2
. (1 -42 ()]
el|H,(6) |1z =Y (3.109)

|8, (5) [ /ZTRg =TT

The standard deviations (in radians) of the two associated phase
factor estimates $l(f) and 62(f) (in radians) are approxi-

mated by
o6, (£)] = sin™" {s[|ﬁ1<f)1]} (3.110)

F8,(6)] = sin”? {e[[ﬁz(f)t]} (3.111)

For small values of e[lﬁlll and e[lﬁzl] , Equations 3,110 and

3.111 can be further simplified to




o[8,(£)] = el|H ()] (3.112)

alé,(6)] = ellfi,(£)]] (3.113)

Various bias error in frequency response function estimates are
discussed also in Reference [3] that should be minimized as

much as possibkle in practice.

3.8 DERIVATIONS OF THEORETICAL FORMULAS

To make this report more self-contained, some special theoretical
formulas are derived here that supplement material discussed in earlier sections. r
These formulas deal with quantities Guu(f), Guy(f) and H2(f) that are involved
in the nonlinear drift force models of Figures 3.2 and 3.6. Readers not interested

in these matters should proceed to Section 4.




3.8.1 Theoretical Formula for Guu(f)

A useful theoretical forrmula will now be derived to

édetermine Guu(f) from knowledge of Gxx(f). From Equation 3.2k,

af) f [X(a)X(£f - a) + X(a)X(f - a)]da (3.11h)

* *® * * ~k ~k
H (£) /. [X (B)X (£-8)+X (B)X (f-8)]dr (3.115)

The two-sided autospectral density function Suu(f) of u(t)

is defined by

1 *
Syu(f) = 7 EIU (H)U(E)]

uu

%f [E[{x*(e)x*(f-e) + X BT (£-8) I {X () X(£-0x)
+ x(P)x(s - B)} laa e (3.116)

In Equation 3.116 the integrand involves a total of four different
fourth-order moments of Gaussian data that breaks down into
products of pairs of second-order moments. A typical fourth-

order moment can be replaced ky the three product pairs

E[x (B)X" (£ -B)X(a)X(£-0a)] =E[X (B)X (£ - B) IE[X(a)X(£ - )]
(3.117)

+ E[X (B)X(a) JE[X (£ - B)X(£-0a)] + E[X (B)X(E - a))JE[X (£ - 8)X(a)]




The first pair of second-order maments in Equation 3117 are given by

* *
E[X (BX (f - B)]

il

Sy (B) 81 (6) (3.118)

E[X- ()X (£ - a)] =S (a)6, (£) (3.119)

where Sxx(a) and S}O'{(B) are two-sided autospectral density functions
of x(t) and where Gl(f) is the finite delta function defined

by

§;(£) = 8,(-£) =T (-1/2T) < £ < (1/27)
(3.120)
= 0 otherwise
© (1/2T)
f dl(f)df = [ §;(f)df =1 (3.121)
Y- v (_I/ZT)

The first pair gives a contribution to §, (f) of Equation 3.116

only at f = 0 since

B , | 4
% f_wf Sxx(a)Sxx(B)oi(f)dadB = oxdl(f) . (3.122)

Here

ol = j: S,y (@) da = ji S, (8) A8 (3.123)

- -4 -]
The second pair of second-order moments in Equation 3117 are

given by

E[x" (8)X(a)] = S,,(8) 6, (a -B) (3.124)
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E[X (f - B)X(f - a)] = S,x(f - 8)8, (a = B) (3.125)

This second pair gives a contribution to Syul(f) of Equation 3.116

represented by

-,},-f_mf Sy (B) S, (£ = B) 62 (o - B) dBda =f_ Syx (@) S, (£ -a)da (3.126)

.-}

The third-pair of second-order moments in Equation 3.117 are

given by

E[X*(E)X(f - a)]

sxx(s) él(f - a- B) (3.127)

I

E[X"(f - B)X(a)] = S (§-@) & (f-a=-8) (3.128)

This third pair gives a contribution to Suu(f) of Equation 3.116

represented by

%j_m[sxx(B)sxx(f—B)Gi(f-a-s)deda =[_ Sy (f-2a)S  (a)da (3.129)

[+ -]

Equation 3.129 is exactly the same as Equation 3.126.

Equations 3.117 to 3.129 prove for f # 0 that

L 4

«©

%j.m[E[x*‘B)X*‘f‘B)X(“)x‘f'“)]dadf’:z/ S, (@S, (f-a)da  (3.130)

-0

Similarly, one can prove for f # 0 that the other fourth-order

moments in Equation 3.116 lead to the results

@

f fz[i*(s)i*(f-e)%(a)i’(f-a)]deda= 2[ S, (@S (f-o)da (3.131)

- 00

|+

1Ly

f fz[x*(s)x*(f-s)§<a)3<'(f—a)]deda= zf S (@3, (f-0da (3.132)
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Bl

xx(a)é’xx(f - a)da  (3.133)

f E[i*(e)')‘i*(f-s)X(a)X(f-a)]dsda=2f§'

The derivation of Equations 3.131 to 3.133 requires formulas

from Table 13.2 of Reference [2]. 1In particular

S = = - (3.134
Sxx(a) Six(a) Six(a) 34)

L ~ o~
where Sxx(a) is the Fourier transform of Rxx(r), and Rxx(r)
is the Hilbert transform of the autocorrelation function Rxx(r).

Hence

Six (@) = B(a)S_, (a) (3.135)

where B(a) satisfies Equation 3.29.
Substitution of Equation 3.117 into Equation 3.116 followed by
substitutions from Equations 3.130 to 3.133° now proves the theore-

tical formulas that for any f # 0 ,

Suu(f) = 4 j~ [Sxx(a)Sxx(f-a)-+Sxx(a)Sxx(f-a)]da (3.136)

-Q0

Suu(f) = 4 j:m 1+ B(a)B(f-a)]Sxx(a)Sxx(f-a)dd (3.137)

These formulas show how to compute Suu(f) from knowledge of

Sxx(f).

The cne-sided autospectral density functions Guu(f) and

Gxx(f) are related to the two-sided autospectral density functions

Suu(f) and Sxx(f) by

2 _(£f) £>0 ( )
G . (f) = - 3.138
uu 0 f <0




C (f) = xx (3.139)
xx 0 £ <O
Also
S (f) =S_ (-f) =+ G_ (f)
uu ~ “uu - 7 “uu (3.1L0)
S (f) = S._(-f) = =5 _(f) (3.141)
XX XX 2 Tuu .

Consider any value of f > 0 and apply Equation 3.31 to
Equation 3.13T7. Now
0

Y
Syulf) = 8 f-m Syx (@S,  (f-a)da+ Bff Sy (@) Sy (£ ~a)da (3.142)

This is the same as

Syu(f) = sfo S,y (~B) S, (£+8)AB + 8]; S,y (@8, (£ -a)da  (3.143)

by letting B = -a and dB = -da . Replacing B8 by a again
and using the fact that Sxx(-a) = Sxx(a), Sxx(f -qa) = Sxx(a-f),
Syu(f) = Bfo Sxx(a)sxx(f+a)da+8ff Sxx(a)sxx(a-f)da (3.1L4)

For any £ > 0 , one now has the equivalent formula in terms of

one-sided autospectral density functions

@®©

Guu(f) = 4]0 Gxx(a)Gxx(f+a)da+4f

. Gxx(a)Gxx(a-f)da (3.145)

Equation 3.145 shows how to compute Guu(f) from knowledge of

Gxx(f).




3.8.2 Theoretical Formulz for Guy(f)

Another theoretical formula of interest is the cross-spectral
density function between u(t) and y(t). The two-sided cross-

spectral density function Suy(f) is defined by

*

_1
Suy(f) =5 E[U (£)Y(£)] (3.1L46)

where U(f) and Y(f) satisfy Equations 3.27 and 3.39, respectively.

Hence

Suy () = %f 1+ 8 (@B (£-a) JE[X ()X (£-0)¥(£)]da (3.147)

For all values of o and £, one can verify that the product

guantity

B*(a)B (£ -0) = B(a)B(f - a) (3.148)

The two-sided cross-bispectrum (also called the second-order
cross-spectral density function) between x(t) and y(t) is
defined for all possible f and g by the two-dimensional func-

tion

E[X (£)X (§)Y(£f+q)] (3.149)

3=

Sxxy(f'g) =

As a special case, when f =0l and g = (f - o), one can compute

E(X (a)X (£-a)Y(£)] (3.150)

= L

Sxxy(a,f-a) =

This result will not be zero for the Y(f) of Equation 3.39.
Substitution of Equations 3.148 and 3.150 into Equation 3.1.47

yields the formula
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Suy(f) = f_w 1 + B(a)B(f—a)]Sxxy(a,f—a)da (3.151)

This formula shows how to compute Suy(f) from knowledge of

The one-sided cross-spectral density function G__(f) 1is

uy
related to the twc-sided cross=spectral density function Suy(f) by
2s __(£) 20D
Guy (£) = i £ (3.152)
0 £f <0
Define the one-sided cross-bispectrum Gxxy(d,f-41) by
s (a,f -a) 2>
Cyxy (@i E - ) = XXy £20 (3.153)
0 £ <0
Now, for any £ > 0 , Equation 3.151 becomes
Guy(f) = ’I_w (1 + B(a)B(f - a)] Gxxy(a,f-a)da (3.154)
Applying Equation 3.31 to Equation 3.154 yields
0 ©
Guy(f) = 2 » Gxxy(a,f-a)da +2J; Gxxy(a,f-a)da (3.155)
Also
“ [
Guy(f) = 2];) Gxxy(—-a,f+a)da+2 j; Gxxy(a,f-a)da (3.156)

The cross-bispectrum functions in Equations 3.155 and 3.156 can

be determined for any f > 0 by the computations
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- w »
E(X (&) X(f+x)Y(f)] =% E[X(a)X (f+a)Y(f)]

L)
it

Cxxy(—a,f +a) =

(3.157)

Elx (@x (£~ o) ¥(£)] = F E[X (a)X(a-£)Y(£)]

i

Gxxy(arf ‘G) =

(3.158)

Equations 3.154 to 3.158 show appropriate ways to compute Guy(f)

from knowledge of Gxxy(a,f -a).




3.8.3 Identification of Hg(f)

A different new theoretical way to identify Hz(f) is
also possible from measured x(t) and y(t) by using
Equation 3.68 together with kgquations 3.137 and 3.151. In
terms of two-sided spectral density functions, Equation 3.68 1is
= (3.1
S,,(f) Hz(f)Suu(f) 59)

uy

Substitution from Equation 3.137 now gives

Suy(f) = 4H2(f) j[m 1+ B(a)B(f-—a)]SXX\a)Sxx(f-a)da (3.160)
However, Equation 3,151 states that
S (f) =f [L + B{a)B(f-a)]S__ . (a,f-a)da (3.161)

XXy

Hence, one obtains the useful relation
Sxxy(a,f-a) = 4H, (f)S, . (a)S  (f -a) (3.162)

This provides an alternate way to estimate Hz(f) from computa-
tion of the other guantities. Consider a change in variables
where o =g and f = 2g. Then (f-a) = g and Equation 3.162

becomes

2
Syxy(9:9) = 4H,(29)S, (g) (3.163)

This is the same as
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_ . 2 .
Sxxy(f,f) = 4H2(zf)sxx(f) (3.36L4)

Tnus Hz(Zf) satisfies here the simple reiation

S (f£,£)
H,(2f) = ——f— (3.165)
4Sxx(f)
where
s. () = 2 X" (H)X(E)] (3.166)
XX T
S (£,£) = 2 e ()X (£)Y(26)] (3.167)
XXy *7? T
with Y(2f) -given by Equation . Finally, Equation
proves that
S (£/2,£/2)
Hy(f) = 22X (3.168)
2 .
4Sxx(f/2)

This concludes Section 3.




4. NONLINEAR NONSYMMETRICAL SYSTEMS

Section 4 develops various input/output relationships when
random data passes through three types of nonlinear
nonsymmetrical systems: (A) Three-Slope Systems, (B)
Catenary Systems and (C) Smooth-Limiter Systems. Included
are formulas for  input/output probability density
functions, correlation functions and spectral density
functions. These particular nonlinear nonsymmetrical
system; are of interest for NCEL applications. Spectral
formulas are stated here using two-sided spectral density

functions.
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.1 THREE-SLOPE SYSTEMS

A first example of a nonlinear nonsymmetrical system is a

three-slope system as sketched in Figure L4.1. Let

y = g(x) = x A <x<B
= -A+a(x + A) x < -A (Lk.1)
= B + b(x - B) x >8B

Figure 4.1 Three-slope system.
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For definiteness, assume here that the constants

0 <A < B, 0 <ac<l, b > 1 (k.2)

The inverse relations are

x =gty =y A Ly <B
= -A + 6y-+A)/é} y < -A (4.3)
= B+[(y—B)/b] y > B

The derivative relations are

dy

Ix - g'(x) =1 -A < x < B
= a x < -A (L.1)
= b X > B
Thus the derivative is discontinuous at x = -A and at x = B.

Let p(x) be the input probability density function and
pz(y) be the output probability density function. Fcr this

problem, from Equation 1.5,

pz(y) = __E(_x)_ (hs)
|dy/ax|
where x on the right-hand side should be replaced by its

equivalent y from x = gﬁl(y). Thus
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Py (y) = p(x) = ply) -A <y <B
- p(-A + [(y+A)/a]) y < -A (4.6)
a
- p(B +[(y -B)/b]) y > 8B
b

Assume the input probability density function p(x) 1is Gaussian

as sketched in Figure k4.2 withu =0 and o, = 1.

p(X)

Figure 4.2 Gaussian input PDF.

Here

p(x) = exp (-x2/2) (4.7)

1
van
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Let
-A
® = p(x)dx = Prob
(=]
0(2 =I p(x)dx = Prob
B
When A < B, clearly a); > oy Also

B
Prob[-A < x < B] =f p(x)dx
-A

1 and a2

f.

o8
«, = fB p,(y)dy

The quantities a represent

o - p,(y)dy = Prob

)

Prob

Thus

B
1 - a) - a, = -r_A py(y)dy =

Note that for A < B, one has

p(-A) > p(B)

Consider now the shape of pz(y);

value ~A from inside,

[y > -A] ’

py(=A") = p(-A)

However, as vy

-104-

approaches the value =A

[x < -A] (L.8)
[x> B]
=1 - a; - a, (L.9)

for the output record

[y < -A] (k.10)

[y >8]
Prob [-A <y < B] (4.11)
(L.12)

As y approaches the

(4.13)

from outside, [y < -A],




pz(_A") - E(_a'_A_)_ (L.14)

For an assumed a < 1, there results

p,(-27) » py(-a") (1.15)

The reverse inequality would be true if a > 1.

Similarly, as y approaches the value B from inside,

[y < BJ],
p,(B) = p(B) (4.16)

while as y approaches the value B from outside [y > B],

p,(8%) = B{B) (b.17)

Here, for an assumed b > 1, these results

p, (%) < p,(B7) (4.18)

with a reverse inequality if b < 1. This treatment shows that
the shape of P, (y) under the assumption that 0 ¢ a < 1) b> I,
must be as sketched in Figure 4 3. For the assumed values here,

observe that «_ > o and

1 a

p,(-A7) > p,(BY) (4.19)
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pz(y)

Figure 4.3 Output PDF for three-slope system.
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Suppose the three-slope system is hard-limited at x = -A

and at x = B such that

y = g(x) =x -A <x<PB
= -A X < -A (Lk.20)
= B x> B

This nonlinear nonsymmetrical system is sketched in Figure k...

Figure b.4 Hard-limited three-slope system.

As before, assume the input probability density function is

Gaussian with u, = 0 and 0y = 1. Now
a; = Prob[x < -A] = Prob[y = -A]
(k.21)
a, = Prob[x > B] = Prob[y = B]
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This gives the output probability density function

Py (y) = pl(y) A <y<B
= a,8(y + A) y = -A (L.22)
= a26(y - B) y = B

where §(y) is the usual delta function. Assuming that

2] > ey the shape of pz(y) is sketched in Figure 4,5,

Py (y)
o« 4
4,
S
-A 0 B

Figure 4.5 Output PDF for hard-limited three-slope system.
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%.2 CATENARY SYSTEMS

A second example of a nonlinear nonsymmetrical system

catenary system as sketched in Figure L.6. Let

y = g(x) = -aa® X < -A
2
= a(x” + 2Ax) -A < xXx B
_ 2
= a(B” + 2AB) Xx >B
Y
1
1
|
]
'
‘ . = X
-A B
’
Figure L6 Catenary system.
For definiteness, assume here that the constants
A>B>0, a>ao
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The inverse relations are

X = g-l(y) = any value of x < -A

when y = -aA2

-a + /A% 4 (y/a), -an® <y < a(8% +2AB) (u.25)

any value of x > B

when vy = a(B2 + 2AB)

The middle range is obtained by solving the quadratic equation

x2 + 2Ax -~ (y/a) =0 (L.26)

where only the positive square root operation makes sense. The

derivative relations are

%¥ = g'(x)

|
o
»
I
>

2a(x +A) -A < x <B (L.27)

Thus, the derivative is discontinuous at x = B.
Let p{x) be the input probability density function and
pz(y) be the output probability density function. For this

problem, from Equation 1.5,

- _P(x)

(L.28)
|dy/dax|

P, (y)

only in the range where -A < x < B, and where the value of x

in the right-hand side should be replaced by its equivalent vy
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from x =g-l(y). Thus, for y in the range —aA2 <y < a(82 + 2AB)J

- _p(x) - p(-A + VAE-F(y/a))
2a|x+A| 2a !é2-+(y/a)

(4.29)

This has the form of a chi-square probability density function
when p(x) 1is assumed to be Gaussian. Different relations are

required for x <-A and x > B.

Assume the input probability function p(x) 1is Gaussian

with M, = 0 and o, = 1 as sketched in Figure L.T where
1 2
p(x) = —— exp(-x"/2) L,
T (4.30)

Figure 4.7 Gaussian input PDF.
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The assumed values for A and B are such that A > B > 0. Let

-A
a = jﬂ p(x)dx Prob [x < -A]

<}

(L.31)
B = jﬂ p(x)dx = Prob [x > B]
B
Clearly,
a < B (L.32)
Also,
B
Prob [-A < x < B] = ]- p(x)dx = 1 = a =B (4.33)
-A

All of the values of x < -A are associated with the single

value of y equal to y = -aAz. Hence the output probability

density function
Py(y) = ad (y + aAz) at y = -aA (L.3k)
where &§(y) 1is the usual delta function. This gives

Prob [y = -aA2]= a (k.35)

Similarly, all the values of x > B are associated with the
single value of vy = a(B2 + 2AB). Hence the output probability

density function
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Py(y) = 86 (y - a[B® + 2AB])  at  y = a(B® + 24B)
where §(y) 1is the usual delta function. This gives
Prob Br= a(B2 + 2AB)] = 8

'There is zero probability here that y < —aA2 or that

v o> a(B2 + 2AB). The probability that y falls inside these

+wo bounds is

Prob [—aA2 <y < a(A2 + 2AB)] =1-a-8

A typical shape for pz(y) is sketched in Figure 4,8,
Observe that ‘pz(y) approaches infinity as y approaches the
value -ahA’ from inside [y > -aAz], but pz(y) stays finite
as y approaches the value a(BZ + 2AB) from inside,

[y < a(B2 + 2AB)]. B

a
pz(Y)

i

-aA 0 a(B?+2aB)

Figure 4.8 Output PDF for catenary system.




Input/Output Spectrum Relations for Catenary System

In the range from -A < x < B, the catenary output y(t)

1s assumed to consist of two components:
(1) a linear term that is proportional to x(t),

(2) a nonlinear term that is proportional to x2(t).

In terms of constants kl and k2 '

y(£) = kyx(£) + kpx°(t) (4.39)

This equation can be made to apply to more general situations

as shown in Figurel.9by letting the catenary output be represent-

ed by
y(t) =y (t) + y,(t) + n(t) (L.k0)
where
yl(t) = linear output due to x(t)
yz(t) = nonlinear output due to v{(t) = xz(t)
. n(t) = uncorrelated zero mean Gaussian output noise

In Figure 4.9 the constant parameter linear system frequency response

functions Hl(f) and Hz(f) incorporate the constants kl and
k2, respectively. Note that Figure 4.9 is a special case of Figure 1.8

that can be analyzed by formulas in Section 1.5. Figure 4.9 can be replaced
by a two-input/single-output linear model with inputs x(t) and v(t) that will

be uncorrelated when x(t) is Gaussian.
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n(t)
Hl(f)

x(t) y (t)

Squarer Hy (£) b——=

Figure 4.9 Catenary system model.

In the frequency domain, the governing relation of this

catenary system model is
Y(f) = Yl(f) + Y2(f) + N(f) (L. k41)

where Yl(f)' Y2(f) and N(f) are Fourier transforms of yl(t),
yz(t) and n(t), respectively. 1In terms of X(f) and V(f),

the Fourier transforms of x(t) and v(t) = xz(t),

Y, (£) = Hy (£)X(£) (4.42)
Y, (£) = Hy(£)V(E) (4.43)
V(£) = f vitye 2Tty =f X(d) X(f - &)da (h.uL)

Note that V(f) can be computed by two different methods, either
directly from v(t) or indirectly from X(f).

For Gaussian input data x(t) as assumed here, the output
terms yl(t) and yz(t) will be uncorrelated. Hence, the two-
sided output spectral density function §S__(f) satisfies the

Yy
relation
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= £ L.Ls)
Syy(f) Sylyl(f) + syzyz(f) + snn( ) (4.45

In terms of sxx(f) and va(f), the two-sided spectral density

functions of x(t) and v(t) = xz(t),

—_ 2 )
Sylyl(f) = IHl(f)l S, (£) (4.L46)
B 2
Syzyz(f) = |H,(£) | 7S, (£) (b.47)
_ 1 * 4
va(f) = F E[V (£)V(f)] (L.48)
Also, for f #0,
va(f) =2 j:m Sxx(a)Sxx(f - a)da (L.49)

Note that va(f) can be computed by two different methods,
either directly from V(f) or indirectly from Sxx(f).
Given Hl(f) and H,(f), plus measurement only of x(t),
the above equations show how to determine the spectral properties
S f and S £f). 1If
ylyl( ) y2y2( )
y(t) is measured as well as x(t), then one can also determine
the two-sided spectral density function Snn(f) of the unmeasured

of yl(t) and y2(t), namely,

n(t) by the relation . |

= - - L,
Snn(f) Syy(f) sylyl(f) syzyz(f) (L4.50)

A good model occurs when Snn(f) is small compared to Syy(f)'
For situations where Hl(f) and Hz(f) are not known, opti-
mum estimates of their properties can be obtained that minimize

Snn(f) provided one can make simultaneous measurements of x(t)
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and y(t). This system identification prcblem can be solved using

the relations

Syy (£) = sxyl(f) = Hy (£)S_, (f) (L.51)
S,y (£) = Hy(£)S,(£) | (1.52)
Thus
S. . (f)
Hy(f) = 2L — (L.53)
SXX(f)
S.. . (f)
Hy(f) = —L— (4.54)
SVV(f)

Here, Sxy(f) is the two-sided cross-spectral density function
between x(t) and y(t), and Svy(f) is the two-sided cross-
spectral density function betwe .. v(t) and y(t) . These

quantities can be comnuted directly by

E(X"(£)Y(£)] (4.55)

|+

Sxy(f) =

E[V (£)Y(£)] (4.56)

=L

Svy(f) =

The quantity Svy(f) can also be computed indirectly by

Svy(f) = j:m Sxxy(a,f - a)da (4.57)

where Sxxy(a,f - a) 1is the two-sided cross-bispectrum (also
called the second-order cross-spectral density function) defined

for all £ and g by the two-dimensional function
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* *
Sy (£:9) = 3 E[X (D)X (9)¥(£+9)] (1.58)

The integrand

* %*
E[X (a)X (f - a)Y(£)] (4.59)

3|

Sxxy(a,f - a) =
is a special case of Sxxy(f,g) when f =& and g =(f - a),

For f # 0, one can also compute Svy(f) from Equations L L9
end 4.52 by the relation

Svy(f) = 2H, (f) '/‘_a° sxx(a)sxx(f - a)da (L.60)

Hence, for f # 0, the two-sided cross-bispectrum satisfies

Syxy(@/E = @) = 2Hy(£)S, (a)S (£ - a) (1.61)

This provides an alternate way to determine Hz(f) from compu-
tation of the other quantities. Consider a change in variables

where a =g and f = 2g. Then (f - a) = g so that one obtains

B 2
sxxy(g,g) = 2H2(Zg)sxx(g) (4.62)

Now, replacing g by £ gives

_ 2
Sxxy(f,f) = 2H2(2f)Sxx(f) (4L.63)
Solving for H2(2f) shows
S (£,£)
Hy(2f) = 2L (4.64)
2
ZSxx(f)
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Finally, replacing f by (£f/2) proves

S £/2,£/2
Hy(f) = xxy (£/2/£/2) (4.65)

2
ZSxx(f/Z)

This concludes the material on system identification and on

input/output spectrum relations for the catenary system.
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4.3 SMOOTH-LIMITER SYSTEMS

Consider the nonlinear nonsymmetric smooth-limiter system

sketched in Figure L4.10 where

X
y = g(x) Y %[0 exp(-t2/2)dt x>0 (4.66)

= Q x < 0

Equation 4,66 is the equation for the normal probability integral.

l e = - - - e Em w Em e —e - c .-~ —.—--—

X
i
0

Figure 4.10 Smooth-limiter system.

For this nonlinear transformation, special values are

g(0) =0

g(l) = 0.683

g(2) = 0.954 (4.67)
g(3) = 0.997

g(«) = 1.000
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Tables are available that give g(x) as a function of x, and
that can also be used to find x for any g(x) 1in range

0 < g(x) < 1.

The inverse relations are

X = g-l(y) = any value of x < 0 for y =0

unique value of x in range 0 < x < » for O0<y <1

no value of x for y <0 or for y > 1

The derivative relations are

V % exp(—xz/Z) x >0

= 0 x <0

]

a !
=9
(4.68)

Here the derivative is discontinuous at x = 0.

Assume that p(x), the input probability density function,

is Gaussian with mean zero and standard deviation o¢ where

p(x) exp(-x2/202) (4.69)

ovV2m
All of the values of x < 0 are associated with the single value

of y = 0. Hence pz(y), the output probability density func-
tion, is such that

P,(y) =3 6(y) at y=0 (4.70)

where the factor (1/2) occurs because the probability is (1/2) that x & 0.

There are no values of x where y <0 or y > 1. Hence

pP,(y) =0 for y <0 or y>1 (L.71)
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In the range where 0 <y < 1 , from Equation 1.5, the result is

pyly) = —BIXL__ W[——z———"‘x’ ] (L.72)
|ay/dax| exp(-x“/2)

where the value of x on the right-hand side should be replaced

by its equivalent y from x = g “(y). As vy .approaches the

value 0 from the inside where y > 0 , the value of x also

approaches zero so that

p,(0%) = ¥} [B—‘i‘-’-’—] = 5 (5.73)

As y approaches the value 1 from the inside where y < 1, the value of

x approaches infinity so that

p,(17)== (L.74)

A typical shape for pz(y) is sketched in Figure L4.11.
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1/2

pz(y)

1/2¢r
e~ Y

— P e ey e e e e e e, . o o -

Figure 4.11 Output PDF for smooth-limiter system.

It is of interest to be able to determine the output auto-
correlation function and the input/output cross-correlation func-
tion for Gaussian input data through this smooth-limiter system.
Such formulas can be found using Price's Theorem of Equation 1.6

and Bussgang's Theorem of Equation 1.7.
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Output Autocorrelation Fupetion for Smooth-Limiter System

By Price's Theorem, the output autocorrelation function
Ryy(r) and input autocorrelation Rxx(r) for Gaussian input
data satisfies the equation

dR.__ (1)

- VY _ ] t
=L = E[g (x,)9 (x,)]
3R__ (1) 1 2 (5.75)
XX V] ' '
='r[ g (x1)g (x,)p(x;,x,)dK dxrg
0
where
x; = x(¢) Y, = y(t)
(L.76)
Xy = x(t + 1) Yy = y(t + 1)
The correlation functions
Ry (T) = E[x;x,] R,y (1) = Ely;y,] (L. 77)
Derivative values from Equation 4.68 are
1
g (xl) = Vg exp(-xi/Z) for x > 0, otherwise zero
. (4.78)
g (xz) = fg exp(-xg/Z) for x > 0, otherwise zero
The joint probability density function
2 2
-(x7 + x5 — 2px,Xx,)
P(X),x,) = 1 exp 12 1 2 (4.79)

2roWh - g2 202(1 - ¢
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Thus

3R, (1) 1 o -(x2+x2—2px x) (xf+x2)
YY = /~ jpexp 12 2 > 127 2 dxldx2
- 2
3R (1) 7252 1 - o 0 207 (1 - p%)
(4.80)
The bracketed quantity contains
2 2 2 2 2 2 2 2
(xl-+x2'-20xlx2) . (xl + x2) _ (xl-+x2)[1-+o (1-07)] —20xlx2
2
202 (1 - 0?) 202(1 - p?)
2 2 2 2
_ X + X, - 2pxlx2/[l‘+ o (1 - p%)]
20%(1 - pz)/[l + 0?1 - 02)]
2 2 2 2
_ xl-+x2-2poxlx2 ) X) + x5 - 20°x1x2 (h.81)
2 2 2 2 2 2
20°(1-0%)/[1+ o*(1-0%] 205(1 - 02)
where o and og are defined by
R, (T)
= p ; = = XX (4.82)
Po . " with p Dxx(T) "'?—
(1 +0%(1 - 9]

0g(1=02) = 21 - P2 /11 + 021~ 0A)] = o%(1- 02 (o /o)

2
2 2 po(l'p)

0 = 07 | =———— (L.83)
°© o(l-oo)
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By these substitutions,

IR, (T) -(x -Fx - Zo X,X.,)
YY = [ f exp 172 dxldxz (L‘-Bh)

SRxx(r) 2 2‘/ 2 20 (1 - p]

The integral is now in the form of a joint Gaussian probability

density function over one guadrant where

. N -(xi + xg - 20 3 ) 1
[ f exp dx,dx, = 7 (L.85)
0 2 2
- P 200(1 - oo)
Hence
2 i o2
= s
3R__ (1) L1V e = \2m .
XX oVl o} o V1 - po
But
2
[o]
pg = (L.87)
2 2, .2
[1 + 0°(1 - p%)]
and
T A e S S T A el
- p 3 =
(o]
1+ 020 - pH)? (0/0,) >
= (o /0% (1 = 0% I_(l + 04?2 - 0402] (4.88)
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This gives

2 2
Po(l = 07) ) 1
- =
1= 0g) [(1+ 052 - 6%
k,
1 (4.89)
= , "
(1 + o3 - B2 (1]
Now
3R (T) 1
Yy = (4.90)
WRex (D 2nf1 4 oH2 - B2 (0)]Y/?
Thus
R_ (1)
1 . o=1 XX
R (1) = sin (—————— + C (L.91)
YY (IF) |1+ 02
dsing the fact that the indefinite integral
[ _dx sin-l(.zs_. +C (5.92)
VaZ - x2 lal
where C 1is a constant of integration. At =t = 0,
02
_ .2 _f1 . =1 L
Ryy(O) = lby —(ﬁ)SJ.n [1—4‘—?] + C ( .93)

from which C can be determined.
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Input/Output Cross-Correlation Function for SmootheLimiter System

By Bussgang's Theorem, the input/output cross-correlation

function R_ (1) for Gaussian input data satisfies the equation

Xy

RXX(T) ®

ny(r) = ——;7—— 0 xg (x)p(x)dx

where

X .
g (x) =}/% f exp(-t/2)at
0

exp (- xz/bcz)

p(x)

ov/2m
ntegration by parts formula gives
fudv=uv—fvdu
Let

u = g{(x) and

Then

]

du

v = - Ozp(x)

At x =0 and at x = «», the product uv
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xp (x)dx

g'(x)dx = /_% exp (- x2/2)dx

(4.9k)

(L.95)

(L.96)

(4.97)

(L.98)

(4.99)

(4.100)




2
where oy is defined by

The integrand is now in the form of a first-order Gaussian

probability density function for x > 0 satisfying

L) —
1l —x2 1
exp|— [ dx = =
o, VI 262 2
0 1
Hernce
) o0 02
1
/ﬁ X g(x)p(x)dx = =
Vam Var (L +02)
and

This concludes Section 4.
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(L.101)

(L.102)

(L.103)

(L.10L)

(4.105)
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